Langerhans cell histiocytosis (LCH) is a rare disorder characterized by tissue accumulation of CD1a+CD207+ LCH cells. In LCH, somatic mutations of the BRAFV600E gene have been detected in tissue LCH cells, bone marrow CD34+ hematopoietic stem cells, circulating CD14+ monocytes, and BDCA1+ myeloid dendritic cells (DC). Targeting BRAFV600E in clonal Langerhans cells (LC) and their precursors is a potential treatment option for patients whose tumors have the mutation. The development of mouse macrophages and LCs is regulated by the CSF1 receptor (CSF1R). In patients with diffuse-type tenosynovial giant cell tumors, CSF1R inhibition depletes tumor-associated macrophages (TAM) with therapeutic efficacy; however, CSF1R signaling in LCs and LCH has not been investigated. We found through IHC and flow cytometry that CSF1R is normally expressed on human CD1a+CD207+ LCs in the epidermis and stratified epithelia. LCs that were differentiated from CD14+ monocytes, BDCA1+ DCs, and CD34+ cord blood progenitors expressed CSF1R that was downregulated upon maturation. Immature LCs migrated toward CSF1, but not IL34. Administration of the c-FMS/CSF1R kinase inhibitors GW2580 and BLZ945 significantly reduced human LC migration. In LCH clinical samples, LCH cells (including BRAFV600E cells) and TAMs retained high expression of CSF1R. We also detected the presence of transcripts for its ligand, CSF1, but not IL34, in all tested LCH cases. CSF1R and CSF1 expression in LCH, and their role in LC migration and differentiation, suggests CSF1R signaling blockade as a candidate rational approach for treatment of LCH, including the BRAFV600E and wild-type forms of the disease.

CSF1R Is Required for Differentiation and Migration of Langerhans Cells and Langerhans Cell Histiocytosis (*LONARDI S and SCUTERA S CO-FIRST AUTHORS)

Scutera, Sara
Co-first
;
Bollero, Daniele;Sparti, Rosaria;Musso, Tiziana;
2020

Abstract

Langerhans cell histiocytosis (LCH) is a rare disorder characterized by tissue accumulation of CD1a+CD207+ LCH cells. In LCH, somatic mutations of the BRAFV600E gene have been detected in tissue LCH cells, bone marrow CD34+ hematopoietic stem cells, circulating CD14+ monocytes, and BDCA1+ myeloid dendritic cells (DC). Targeting BRAFV600E in clonal Langerhans cells (LC) and their precursors is a potential treatment option for patients whose tumors have the mutation. The development of mouse macrophages and LCs is regulated by the CSF1 receptor (CSF1R). In patients with diffuse-type tenosynovial giant cell tumors, CSF1R inhibition depletes tumor-associated macrophages (TAM) with therapeutic efficacy; however, CSF1R signaling in LCs and LCH has not been investigated. We found through IHC and flow cytometry that CSF1R is normally expressed on human CD1a+CD207+ LCs in the epidermis and stratified epithelia. LCs that were differentiated from CD14+ monocytes, BDCA1+ DCs, and CD34+ cord blood progenitors expressed CSF1R that was downregulated upon maturation. Immature LCs migrated toward CSF1, but not IL34. Administration of the c-FMS/CSF1R kinase inhibitors GW2580 and BLZ945 significantly reduced human LC migration. In LCH clinical samples, LCH cells (including BRAFV600E cells) and TAMs retained high expression of CSF1R. We also detected the presence of transcripts for its ligand, CSF1, but not IL34, in all tested LCH cases. CSF1R and CSF1 expression in LCH, and their role in LC migration and differentiation, suggests CSF1R signaling blockade as a candidate rational approach for treatment of LCH, including the BRAFV600E and wild-type forms of the disease.
8
6
829
841
Lonardi, Silvia; Scutera, Sara; Licini, Sara; Lorenzi, Luisa; Cesinaro, Anna Maria; Gatta, Luisa Benerini; Castagnoli, Carlotta; Bollero, Daniele; Sparti, Rosaria; Tomaselli, Michela; Medicina, Daniela; Calzetti, Federica; Cassatella, Marco Antonio; Facchetti, Fabio; Musso, Tiziana; Vermi, William
File in questo prodotto:
File Dimensione Formato  
cir scutera preprint.pdf

Accesso aperto

Descrizione: articolo principale
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
CIR-19-0232_LR proof.pdf

Accesso riservato

Descrizione: articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1741053
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact