GRB 131108A is a bright long gamma-ray burst (GRB) detected by the Large Area Telescope and the Gamma-ray Burst Monitor on board the Fermi Gamma-ray Space Telescope. Dedicated temporal and spectral analyses reveal three γ-ray flares dominating above 100 MeV, which are not directly related to the prompt emission in the Gamma-ray Burst Monitor band (10 keV-10 MeV). The high-energy light curve of GRB 131108A (100 MeV-10 GeV) shows an unusual evolution: a steep decay, followed by three flares with an underlying emission, and then a long-lasting decay phase. The detailed analysis of the γ-ray flares finds that the three flares are 6-20 times brighter than the underlying emission and are similar to each other. The fluence of each flare, (1.6 ∼ 2.0) × 10-6 erg cm-2, is comparable to that of emission during the steep decay phase, 1.7 × 10-6 erg cm-2. The total fluence from three γ-ray flares is 5.3 × 10-6 erg cm-2. The three γ-ray flares show properties similar to the usual X-ray flares that are sharp flux increases, occurring in ∼50% of afterglows, in some cases well after the prompt emission. Also, the temporal and spectral indices during the early steep decay phase and the decaying phase of each flare show the consistency with a relation of the curvature effect (α = 2 + β ), which is the first observational evidence of the high-latitude emission in the GeV energy band.

Bright Gamma-Ray Flares Observed in GRB 131108A

Ajello M.;Baldini L.;Berretta A.;Bonino R.;Buson S.;Costantin D.;Fusco P.;Giglietto N.;Green D.;Loparco F.;Maldera S.;Piron F.;
2019-01-01

Abstract

GRB 131108A is a bright long gamma-ray burst (GRB) detected by the Large Area Telescope and the Gamma-ray Burst Monitor on board the Fermi Gamma-ray Space Telescope. Dedicated temporal and spectral analyses reveal three γ-ray flares dominating above 100 MeV, which are not directly related to the prompt emission in the Gamma-ray Burst Monitor band (10 keV-10 MeV). The high-energy light curve of GRB 131108A (100 MeV-10 GeV) shows an unusual evolution: a steep decay, followed by three flares with an underlying emission, and then a long-lasting decay phase. The detailed analysis of the γ-ray flares finds that the three flares are 6-20 times brighter than the underlying emission and are similar to each other. The fluence of each flare, (1.6 ∼ 2.0) × 10-6 erg cm-2, is comparable to that of emission during the steep decay phase, 1.7 × 10-6 erg cm-2. The total fluence from three γ-ray flares is 5.3 × 10-6 erg cm-2. The three γ-ray flares show properties similar to the usual X-ray flares that are sharp flux increases, occurring in ∼50% of afterglows, in some cases well after the prompt emission. Also, the temporal and spectral indices during the early steep decay phase and the decaying phase of each flare show the consistency with a relation of the curvature effect (α = 2 + β ), which is the first observational evidence of the high-latitude emission in the GeV energy band.
2019
Inglese
Esperti anonimi
886
2
L33-1
L33-7
7
https://arxiv.org/abs/1911.04642
FRANCIA
GERMANIA
STATI UNITI D'AMERICA
GIAPPONE
SVEZIA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
111
Ajello M.; Arimoto M.; Asano K.; Axelsson M.; Baldini L.; Barbiellini G.; Bastieri D.; Bellazzini R.; Berretta A.; Bissaldi E.; Blandford R.D.; Bonino...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
1911.04642.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 523.4 kB
Formato Adobe PDF
523.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1744108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact