This paper describes the Multimedia Application for Diet Management (MADiMan), a system that supports users in managing their diets while admitting diet transgressions. MADiMan consists of a numerical reasoner that takes into account users’ dietary constraints and automatically adapts the users’ diet, and of a natural language generation (NLG) system that automatically creates textual messages for explaining the results provided by the reasoner with the aim of persuading users to stick to a healthy diet. In the first part of the paper, we introduce the MADiMan system and, in particular, the basic mechanisms related to reasoning, data interpretation and content selection for a numeric data-to-text NLG system. We also discuss a number of factors influencing the design of the textual messages produced. In particular, we describe in detail the design of the sentence-aggregation procedure, which determines the compactness of the final message by applying two aggregation strategies. In the second part of the paper, we present the app that we developed, CheckYourMeal!, and the results of two human-based quantitative evaluations of the NLG module conducted using CheckYourMeal! in a simulation. The first evaluation, conducted with twenty users, ascertained both the perceived usefulness of graphics/text and the appeal, easiness and persuasiveness of the textual messages. The second evaluation, conducted with thirty-nine users, ascertained their persuasive power. The evaluations were based on the analysis of questionnaires and of logged data of users’ behaviour. Both evaluations showed significant results.

Building a Persuasive Virtual Dietitian

Anselma, Luca
;
Mazzei, Alessandro
2020

Abstract

This paper describes the Multimedia Application for Diet Management (MADiMan), a system that supports users in managing their diets while admitting diet transgressions. MADiMan consists of a numerical reasoner that takes into account users’ dietary constraints and automatically adapts the users’ diet, and of a natural language generation (NLG) system that automatically creates textual messages for explaining the results provided by the reasoner with the aim of persuading users to stick to a healthy diet. In the first part of the paper, we introduce the MADiMan system and, in particular, the basic mechanisms related to reasoning, data interpretation and content selection for a numeric data-to-text NLG system. We also discuss a number of factors influencing the design of the textual messages produced. In particular, we describe in detail the design of the sentence-aggregation procedure, which determines the compactness of the final message by applying two aggregation strategies. In the second part of the paper, we present the app that we developed, CheckYourMeal!, and the results of two human-based quantitative evaluations of the NLG module conducted using CheckYourMeal! in a simulation. The first evaluation, conducted with twenty users, ascertained both the perceived usefulness of graphics/text and the appeal, easiness and persuasiveness of the textual messages. The second evaluation, conducted with thirty-nine users, ascertained their persuasive power. The evaluations were based on the analysis of questionnaires and of logged data of users’ behaviour. Both evaluations showed significant results.
7
3
1
27
https://www.mdpi.com/2227-9709/7/3/27
intelligent diet management; natural language generation; constraint propagation
Anselma, Luca; Mazzei, Alessandro
File in questo prodotto:
File Dimensione Formato  
informatics-07-00027-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1747531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact