In mass disasters with multinational victims, it is critical to identify the deceased for judicial, ethical, religious, and human rights reasons, as well as to allow the next of kin to complete the grieving process. Disaster Victim Identification (DVI) process is a complex procedure where postmortem (PM) identifying data, essentially fingerprints, DNA, and dental, are collected to be compared with equivalent antemortem (AM) data related to the missing person list. Although there are solutions used in the field of human identification, they all fall short of equipping them with the tools needed for achieving human identification in a timely manner. Initially, it is significantly challenging to manage missing person lists containing years, and sometimes decades, of family AM data resources’ updates. Furthermore, there is currently no record of any holistic technical solutions for managing both AM and PM for human identification to support collaborative multinational and inter-jurisdictional processes. Blockchain technology provides the tools to facilitate building trustworthy, secure, and holistic ecosystems, and it can disseminate siloed AM and PM data across systems, protecting data breaches, redundancies, inconsistencies, and errors. As such, blockchain technology can revolutionize the human identification process worldwide in terms of managing missing person lists, AM data repositories for living people, PM data repositories of recovered unidentified victims, and contribute to the comparison of compatible biological profiles for definitive identification. Using real-world scenarios, the authors propose a number of promising use cases to attain a holistic understanding of the challenges and present how blockchain technology meets such challenges and facilitates multi-jurisdictional data information-sharing in conjunction with the forthcoming circulation of patients’ electronic medical and dental records.
Promising Blockchain Technology Applications and Use Case Designs for the Identification of Multinational Victims of Mass Disasters
Emilio NuzzoleseLast
2020-01-01
Abstract
In mass disasters with multinational victims, it is critical to identify the deceased for judicial, ethical, religious, and human rights reasons, as well as to allow the next of kin to complete the grieving process. Disaster Victim Identification (DVI) process is a complex procedure where postmortem (PM) identifying data, essentially fingerprints, DNA, and dental, are collected to be compared with equivalent antemortem (AM) data related to the missing person list. Although there are solutions used in the field of human identification, they all fall short of equipping them with the tools needed for achieving human identification in a timely manner. Initially, it is significantly challenging to manage missing person lists containing years, and sometimes decades, of family AM data resources’ updates. Furthermore, there is currently no record of any holistic technical solutions for managing both AM and PM for human identification to support collaborative multinational and inter-jurisdictional processes. Blockchain technology provides the tools to facilitate building trustworthy, secure, and holistic ecosystems, and it can disseminate siloed AM and PM data across systems, protecting data breaches, redundancies, inconsistencies, and errors. As such, blockchain technology can revolutionize the human identification process worldwide in terms of managing missing person lists, AM data repositories for living people, PM data repositories of recovered unidentified victims, and contribute to the comparison of compatible biological profiles for definitive identification. Using real-world scenarios, the authors propose a number of promising use cases to attain a holistic understanding of the challenges and present how blockchain technology meets such challenges and facilitates multi-jurisdictional data information-sharing in conjunction with the forthcoming circulation of patients’ electronic medical and dental records.File | Dimensione | Formato | |
---|---|---|---|
S. Alsalamah E. Nuzzolese_fbloc-03-00034.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.