Quasi-harmonic lattice-dynamical calculations are performed to investigate the combined effect of temperature and pressure on the structural and mechanical properties of a prototypical metal–organic framework material: MOF-5. The softening upon compression of an (Formula presented.) phonon mode at the Γ point in the high-symmetry F (Formula presented.) structure is identified, which leads to a symmetry reduction and a group–subgroup phase transition to a low-symmetry F (Formula presented.) phase for compressions larger than 0.8%. The effect of the symmetry reduction on the equation-of-state of MOF-5 is investigated, which provides a static bulk modulus K reducing from 17 to 14 GPa and a corresponding change of (Formula presented.) (pressure derivative of K) from positive to negative. The effect of pressure on the negative thermal expansion of the framework and on its mechanical response is analyzed. The evolution of the mechanical anisotropy of MOF-5 as a function of pressure is also determined, which allows identifying the occurrence of a shear-induced mechanical instability at 0.45 GPa.

Quasi-Harmonic Lattice Dynamics of a Prototypical Metal–Organic Framework

Civalleri B.;Erba A.
2019-01-01

Abstract

Quasi-harmonic lattice-dynamical calculations are performed to investigate the combined effect of temperature and pressure on the structural and mechanical properties of a prototypical metal–organic framework material: MOF-5. The softening upon compression of an (Formula presented.) phonon mode at the Γ point in the high-symmetry F (Formula presented.) structure is identified, which leads to a symmetry reduction and a group–subgroup phase transition to a low-symmetry F (Formula presented.) phase for compressions larger than 0.8%. The effect of the symmetry reduction on the equation-of-state of MOF-5 is investigated, which provides a static bulk modulus K reducing from 17 to 14 GPa and a corresponding change of (Formula presented.) (pressure derivative of K) from positive to negative. The effect of pressure on the negative thermal expansion of the framework and on its mechanical response is analyzed. The evolution of the mechanical anisotropy of MOF-5 as a function of pressure is also determined, which allows identifying the occurrence of a shear-induced mechanical instability at 0.45 GPa.
2019
2
11
1900093-1
1900093-6
CRYSTAL code; mechanical softening upon compression; negative thermal expansion
Ryder M.R.; Maul J.; Civalleri B.; Erba A.
File in questo prodotto:
File Dimensione Formato  
MOF5_QHA_ADV_THEOR_SIMUL.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
MOF5_QHA.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1751664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact