Background and Aims: Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide. Despite offering a prime paradigm for screening, CRC screening is often hampered by invasiveness. Endoo is a potentially painless colonoscopy method with an active locomotion tethered capsule offering diagnostic and therapeutic capabilities. Materials and Methods: The Endoo system comprises a soft-tethered capsule, which embeds a permanent magnet controlled by an external robot equipped with a second permanent magnet. Capsule navigation is achieved via closed-loop interaction between the two magnets. Ex-vivo tests were conducted by endoscopy experts and trainees to evaluate the basic key features, usability, and compliance in comparison with conventional colonoscopy (CC) in feasibility and pilot studies. Results: Endoo showed a 100% success rate in operating channel and target approach tests. Progression of the capsule was feasible and repeatable. The magnetic link was lost an average of 1.28 times per complete procedure but was restored in 100% of cases. The peak value of interaction forces was higher in the CC group than the Endoo group (4.12N vs. 1.17N). The cumulative interaction forces over time were higher in the CC group than the Endoo group between the splenic flexure and mid-transverse colon (16.53Ns vs. 1.67Ns, p < 0.001), as well as between the hepatic flexure and cecum (28.77Ns vs. 2.47Ns, p = 0.005). The polyp detection rates were comparable between groups (9.1 ± 0.9% vs. 8.7 ± 0.9%, CC and Endoo respectively, per procedure). Robotic colonoscopies were completed in 67% of the procedures performed with Endoo (53% experts and 100% trainees). Conclusions: Endoo allows smoother navigation than CC and possesses comparable features. Although further research is needed, magnetic capsule colonoscopy demonstrated promising results compared to CC.
Robotic-Assisted Colonoscopy Platform with a Magnetically-Actuated Soft-Tethered Capsule
Verra, Mauro;Lo Secco, Giacomo;Forcignanò, Edoardo;Menciassi, Arianna;Arezzo, Alberto
2020-01-01
Abstract
Background and Aims: Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide. Despite offering a prime paradigm for screening, CRC screening is often hampered by invasiveness. Endoo is a potentially painless colonoscopy method with an active locomotion tethered capsule offering diagnostic and therapeutic capabilities. Materials and Methods: The Endoo system comprises a soft-tethered capsule, which embeds a permanent magnet controlled by an external robot equipped with a second permanent magnet. Capsule navigation is achieved via closed-loop interaction between the two magnets. Ex-vivo tests were conducted by endoscopy experts and trainees to evaluate the basic key features, usability, and compliance in comparison with conventional colonoscopy (CC) in feasibility and pilot studies. Results: Endoo showed a 100% success rate in operating channel and target approach tests. Progression of the capsule was feasible and repeatable. The magnetic link was lost an average of 1.28 times per complete procedure but was restored in 100% of cases. The peak value of interaction forces was higher in the CC group than the Endoo group (4.12N vs. 1.17N). The cumulative interaction forces over time were higher in the CC group than the Endoo group between the splenic flexure and mid-transverse colon (16.53Ns vs. 1.67Ns, p < 0.001), as well as between the hepatic flexure and cecum (28.77Ns vs. 2.47Ns, p = 0.005). The polyp detection rates were comparable between groups (9.1 ± 0.9% vs. 8.7 ± 0.9%, CC and Endoo respectively, per procedure). Robotic colonoscopies were completed in 67% of the procedures performed with Endoo (53% experts and 100% trainees). Conclusions: Endoo allows smoother navigation than CC and possesses comparable features. Although further research is needed, magnetic capsule colonoscopy demonstrated promising results compared to CC.File | Dimensione | Formato | |
---|---|---|---|
cancers-12-02485-v3.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.