The Posada-Asinara Line is a crustal-scale transpressive shear zone affecting the Variscan basement in northern Sardinia during Late Carboniferous time. We investigated a structural transect of the Posada-Asinara Line (Baronie) with the aid of geological mapping and structural analysis. N-verging F2 isoclinal folds with associated mylonitic foliation (S2) are the main deformation features developed during the Posada-Asinara Line activity (D2). The mineral assemblages and microstructures suggest that the Posada-Asinara Line was affected by a retrograde metamorphic path. This is also confirmed by quartz microstructures, where subgrain rotation recrystallization superimposes on grain boundary migration recrystallization. Crystallographic preferred orientation data, obtained using electron backscatter diffraction, allowed analysis of quartz slip systems and estimation of the deformation temperature, vorticity of flow and rheological parameters (flow stress and strain rate) during the Posada-Asinara Line activity. Quartz deformation temperatures of 400 ± 50 °C have been estimated along a transect perpendicular to the Posada-Asinara Line, in agreement with the syn-kinematic post-metamorphic peak mineral assemblages and the late microstructures of quartz. The D2 phase can be subdivided in two events: An early D2early phase, related to the metamorphic peak and low kinematic vorticity (pure shear dominated), and a late D2late phase characterized by a lower metamorphic grade and an increased kinematic vorticity (simple shear dominated). Palaeopiezometry and strain rate estimates associated with the D2late deformation event showed an intensity gradient increasing towards the core of the shear zone. The D2early deformation developed under peak temperature conditions, while the D2late event was active at shallower structural levels.

Structural setting of a transpressive shear zone: Insights from geological mapping, quartz petrofabric and kinematic vorticity analysis in NE Sardinia (Italy)

Montomoli C.
;
Iaccarino S.;Carosi R.
Last
2020-01-01

Abstract

The Posada-Asinara Line is a crustal-scale transpressive shear zone affecting the Variscan basement in northern Sardinia during Late Carboniferous time. We investigated a structural transect of the Posada-Asinara Line (Baronie) with the aid of geological mapping and structural analysis. N-verging F2 isoclinal folds with associated mylonitic foliation (S2) are the main deformation features developed during the Posada-Asinara Line activity (D2). The mineral assemblages and microstructures suggest that the Posada-Asinara Line was affected by a retrograde metamorphic path. This is also confirmed by quartz microstructures, where subgrain rotation recrystallization superimposes on grain boundary migration recrystallization. Crystallographic preferred orientation data, obtained using electron backscatter diffraction, allowed analysis of quartz slip systems and estimation of the deformation temperature, vorticity of flow and rheological parameters (flow stress and strain rate) during the Posada-Asinara Line activity. Quartz deformation temperatures of 400 ± 50 °C have been estimated along a transect perpendicular to the Posada-Asinara Line, in agreement with the syn-kinematic post-metamorphic peak mineral assemblages and the late microstructures of quartz. The D2 phase can be subdivided in two events: An early D2early phase, related to the metamorphic peak and low kinematic vorticity (pure shear dominated), and a late D2late phase characterized by a lower metamorphic grade and an increased kinematic vorticity (simple shear dominated). Palaeopiezometry and strain rate estimates associated with the D2late deformation event showed an intensity gradient increasing towards the core of the shear zone. The D2early deformation developed under peak temperature conditions, while the D2late event was active at shallower structural levels.
2020
57
11
1898
1916
EBSD; quartz crystallographic preferred orientation; Sardinia; Transpressional tectonics; Variscan Belt; vorticity of flow
Graziani R.; Montomoli C.; Iaccarino S.; Menegon L.; Nania L.; Carosi R.
File in questo prodotto:
File Dimensione Formato  
Graziani et al 2020 structural_setting_of_a_transpressive_shear_zone_insights_from_geological_mapping_quartz_petrofabric_and_kinematic_vorticity_analysis_in_ne_sardinia_italy.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Geological Magazine 157.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1755381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact