We provide sharp analytical upper and lower bounds for value-at-risk (VaR) and sharp bounds for expected shortfall (ES) of portfolios of any dimension subject to default risk. To do so, the main methodological contribution of the paper consists in analytically finding the convex hull generators for the class of exchangeable Bernoulli variables with given mean and for the class of exchangeable Bernoulli variables with given mean and correlation in any dimension. Using these analytical results, we first describe all possible dependence structures for default, in the class of finite sequences of exchangeable Bernoulli random variables. We then measure how model risk affects VaR and ES.

Model risk in credit risk

Luciano E.
;
Semeraro P.
2021-01-01

Abstract

We provide sharp analytical upper and lower bounds for value-at-risk (VaR) and sharp bounds for expected shortfall (ES) of portfolios of any dimension subject to default risk. To do so, the main methodological contribution of the paper consists in analytically finding the convex hull generators for the class of exchangeable Bernoulli variables with given mean and for the class of exchangeable Bernoulli variables with given mean and correlation in any dimension. Using these analytical results, we first describe all possible dependence structures for default, in the class of finite sequences of exchangeable Bernoulli random variables. We then measure how model risk affects VaR and ES.
2021
31
1
176
202
credit risk; default risk; exchangeable Bernoulli distributions; model risk; risk measures
Fontana R.; Luciano E.; Semeraro P.
File in questo prodotto:
File Dimensione Formato  
mafi.12285.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 606.79 kB
Formato Adobe PDF
606.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1757134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact