Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.

Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits

Girlanda, Mariangela;Perotto, Silvia;
2020-01-01

Abstract

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
2020
Inglese
Esperti anonimi
11
1
5125
5142
17
https://www.nature.com/articles/s41467-020-18795-w
FRANCIA
STATI UNITI D'AMERICA
ARABIA SAUDITA
CANADA
ESTONIA
GIAPPONE
ISRAELE
PAESI BASSI
REPUBBLICA CECA
REPUBBLICA POPOLARE CINESE
SVIZZERA
UNGHERIA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
56
Miyauchi, Shingo; Kiss, Enikő; Kuo, Alan; Drula, Elodie; Kohler, Annegret; Sánchez-García, Marisol; Morin, Emmanuelle; Andreopoulos, Bill; Barry, Kerr...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Shingo_Miyauchi_NatureCommunications_2020.pdf

Accesso aperto

Descrizione: PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1758546
Citazioni
  • ???jsp.display-item.citation.pmc??? 60
  • Scopus 258
  • ???jsp.display-item.citation.isi??? 243
social impact