Atmospheric plastic pollution is now a global problem. Microplastics (MP) have been detected in urban atmospheres as well as in remote and pristine environments, showing that suspension, deposition and aeolian transport of MP should be included and considered as a major transport pathway in the plastic life cycle. This work reports an up to date review of the experimental estimation of deposition rate of MP in rural and urban environment, also analyzing the correlation with meteorological factors. Due to the limitations in sampling and instrumental methodology, little is known about MP and nanoplastics (NP) with sizes lower than 50 μm. In this review, we describe how NP could be transported for longer distances than MP, making them globally present and potentially more concentrated than MP. We highlight that it is crucial to explore new methodologies to collect and analyze NP. Future research should focus on the development of new technologies, combining the existent knowledge on nanomaterial and atmospheric particle analysis.

Atmospheric micro and nanoplastics: An enormous microscopic problem

Passananti M.
Last
2020-01-01

Abstract

Atmospheric plastic pollution is now a global problem. Microplastics (MP) have been detected in urban atmospheres as well as in remote and pristine environments, showing that suspension, deposition and aeolian transport of MP should be included and considered as a major transport pathway in the plastic life cycle. This work reports an up to date review of the experimental estimation of deposition rate of MP in rural and urban environment, also analyzing the correlation with meteorological factors. Due to the limitations in sampling and instrumental methodology, little is known about MP and nanoplastics (NP) with sizes lower than 50 μm. In this review, we describe how NP could be transported for longer distances than MP, making them globally present and potentially more concentrated than MP. We highlight that it is crucial to explore new methodologies to collect and analyze NP. Future research should focus on the development of new technologies, combining the existent knowledge on nanomaterial and atmospheric particle analysis.
2020
Inglese
Esperti anonimi
12
18
7327
7343
17
Atmosphere; Micro and nanoplastics; Plastic cycle; Transport
FINLANDIA
   DAMOCLES
   H2020
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
2
03-CONTRIBUTO IN RIVISTA::03B-Review in Rivista / Rassegna della Lett. in Riv. / Nota Critica
reserved
262
info:eu-repo/semantics/article
Bianco A.; Passananti M.
File in questo prodotto:
File Dimensione Formato  
Bianco_2020_review.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1759933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 64
social impact