Tumor immunosuppression is a major cause for treatment failure and disease relapse, both in solid tumors and leukemia. Local hypoxia is among the conditions that cause immunosuppression, acting at least in part through the upregulation of extracellular adenosine levels, which potently suppress T cell responses and skew macrophages towards an M2 phenotype. Hence, there is intense investigation to identify drugs that target this axis. By using the TCL1 adoptive transfer CLL mouse model, we show that adenosine production and signaling are upregulated in the hypoxic lymphoid niches, where intense colonization of leukemic cells occurs. This leads to a progressive remodeling of the immune system towards tolerance, with expansion of T regulatory cells (Tregs), loss of CD8+ T cell cytotoxicity and differentiation of murine macrophages towards the patrolling (M2-like) subset. In vivo administration of SCH58261, an inhibitor the A2A adenosine receptor, re-awakens T cell responses, while limiting Tregs expansion, and re-polarizes monocytes towards the inflammatory (M1-like) phenotype. These results show for the first time the in vivo contribution of adenosine signaling to immune tolerance in CLL, and the translational implication of drugs interrupting this pathway. Although the effects of SCH58261 on leukemic cells are limited, interfering with adenosine signaling may represent an appealing strategy for combination-based therapeutic approaches.

Targeting of the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia

Arruga, Francesca
First
;
Serra, Sara;Vitale, Nicoletta;Guerra, Giulia;Papait, Andrea;Gyau, Benjamin Baffour;Tito, Francesco;Vaisitti, Tiziana
Co-last
;
Deaglio, Silvia
Co-last
2021-01-01

Abstract

Tumor immunosuppression is a major cause for treatment failure and disease relapse, both in solid tumors and leukemia. Local hypoxia is among the conditions that cause immunosuppression, acting at least in part through the upregulation of extracellular adenosine levels, which potently suppress T cell responses and skew macrophages towards an M2 phenotype. Hence, there is intense investigation to identify drugs that target this axis. By using the TCL1 adoptive transfer CLL mouse model, we show that adenosine production and signaling are upregulated in the hypoxic lymphoid niches, where intense colonization of leukemic cells occurs. This leads to a progressive remodeling of the immune system towards tolerance, with expansion of T regulatory cells (Tregs), loss of CD8+ T cell cytotoxicity and differentiation of murine macrophages towards the patrolling (M2-like) subset. In vivo administration of SCH58261, an inhibitor the A2A adenosine receptor, re-awakens T cell responses, while limiting Tregs expansion, and re-polarizes monocytes towards the inflammatory (M1-like) phenotype. These results show for the first time the in vivo contribution of adenosine signaling to immune tolerance in CLL, and the translational implication of drugs interrupting this pathway. Although the effects of SCH58261 on leukemic cells are limited, interfering with adenosine signaling may represent an appealing strategy for combination-based therapeutic approaches.
106
5
1343
1353
https://haematologica.org/article/view/9718
Chronic Lymphocytic Leukemia; adenosinergic axis; immune system; immunosuppression; targeting
Arruga, Francesca; Serra, Sara; Vitale, Nicoletta; Guerra, Giulia; Papait, Andrea; Gyau, Benjamin Baffour; Tito, Francesco; Efremov, Dimitar; Vaisitti, Tiziana; Deaglio, Silvia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1760916
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact