We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0, T] × Rd, d ≥ 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain our result for a class of diffusions whose associated second order differential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.

On Lipschitz continuous optimal stopping boundaries

De Angelis T.;
2019-01-01

Abstract

We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0, T] × Rd, d ≥ 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain our result for a class of diffusions whose associated second order differential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.
2019
57
1
402
436
http://arxiv.org/abs/1701.07491
Free boundary problems; Lipschitz free boundaries; Optimal stopping
De Angelis T.; Stabile G.
File in questo prodotto:
File Dimensione Formato  
DeAngelis-Stabile(2017)-Oct2018.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 554.86 kB
Formato Adobe PDF
554.86 kB Adobe PDF Visualizza/Apri
DeAngelis-Stabile(2019)SICON.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 559.01 kB
Formato Adobe PDF
559.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1761919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact