We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0, T] × Rd, d ≥ 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain our result for a class of diffusions whose associated second order differential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.

On Lipschitz continuous optimal stopping boundaries

De Angelis T.;
2019-01-01

Abstract

We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space [0, T] × Rd, d ≥ 1. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain our result for a class of diffusions whose associated second order differential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.
2019
Inglese
Esperti anonimi
57
1
402
436
35
http://arxiv.org/abs/1701.07491
Free boundary problems; Lipschitz free boundaries; Optimal stopping
no
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
2
De Angelis T.; Stabile G.
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
DeAngelis-Stabile(2017)-Oct2018.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 554.86 kB
Formato Adobe PDF
554.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1761919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact