This article seeks to address the problem of the ‘resource consumption bottleneck’ of creating legal semantic technologies manually. It describes a semantic role labeling based information extraction system to extract definitions and norms from legislation and represent them as structured norms in legal ontologies. The output is intended to help make laws more accessible, understandable, and searchable in a legal document management system.

Populating legal ontologies using semantic role labeling

Humphreys L.
;
Boella G.;Robaldo L.;Di Caro L.;
2020-01-01

Abstract

This article seeks to address the problem of the ‘resource consumption bottleneck’ of creating legal semantic technologies manually. It describes a semantic role labeling based information extraction system to extract definitions and norms from legislation and represent them as structured norms in legal ontologies. The output is intended to help make laws more accessible, understandable, and searchable in a legal document management system.
2020
forthcoming
1
20
Artificial intelligence; Classification; Information extraction; Law; Normative reasoning; Ontology; Semantic role labeling
Humphreys L.; Boella G.; van der Torre L.; Robaldo L.; Di Caro L.; Ghanavati S.; Muthuri R.
File in questo prodotto:
File Dimensione Formato  
s10506-020-09271-3.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1762571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact