This article seeks to address the problem of the ‘resource consumption bottleneck’ of creating legal semantic technologies manually. It describes a semantic role labeling based information extraction system to extract definitions and norms from legislation and represent them as structured norms in legal ontologies. The output is intended to help make laws more accessible, understandable, and searchable in a legal document management system.
Titolo: | Populating legal ontologies using semantic role labeling | |
Autori Riconosciuti: | ||
Autori: | Humphreys L.; Boella G.; van der Torre L.; Robaldo L.; Di Caro L.; Ghanavati S.; Muthuri R. | |
Data di pubblicazione: | 2020 | |
Abstract: | This article seeks to address the problem of the ‘resource consumption bottleneck’ of creating legal semantic technologies manually. It describes a semantic role labeling based information extraction system to extract definitions and norms from legislation and represent them as structured norms in legal ontologies. The output is intended to help make laws more accessible, understandable, and searchable in a legal document management system. | |
Volume: | forthcoming | |
Pagina iniziale: | 1 | |
Pagina finale: | 20 | |
Digital Object Identifier (DOI): | 10.1007/s10506-020-09271-3 | |
Parole Chiave: | Artificial intelligence; Classification; Information extraction; Law; Normative reasoning; Ontology; Semantic role labeling | |
Rivista: | ARTIFICIAL INTELLIGENCE AND LAW | |
Appare nelle tipologie: | 03A-Articolo su Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.