To accurately diagnose COVID-19 infection and its time-dependent progression, the rapid, sensitive, and noninvasive determination of immunoglobulins A specific to SARS-CoV-2 (IgA) in saliva and serum is needed to complement tests that detect immunoglobulins G and M. We have developed a dual optical/chemiluminescence format of a lateral flow immunoassay (LFIA) immunosensor for IgA in serum and saliva. A recombinant nucleocapsid antigen specifically captures SARS-CoV-2 antibodies in patient specimens. A labelled anti-human IgA reveals the bound IgA fraction. A dual colorimetric and chemiluminescence detection enables the affordable and ultrasensitive determination of IgA to SARS-CoV-2. Specifically, a simple smartphone-camera-based device measures the colour signal provided by nanogold-labelled anti-human IgA. For the ultrasensitive chemiluminescence transduction, we used a contact imaging portable device based on cooled CCD, and measured the light signal resulting from the reaction of the HRP-labelled anti-human IgA with a H2O2/luminol/enhancers substrate. A total of 25 serum and 9 saliva samples from infected and/or recovered individuals were analysed by the colorimetric LFIA, which was sensitive and reproducible enough for the semi-quantification of IgA in subjects with a strong serological response and in the early stage of COVID-19 infection. Switching to CL detection, the same immunosensor exhibited higher detection capability, revealing the presence of salivary IgA in infected individuals. For the patients included in the study (n = 4), the level of salivary IgA correlated with the time elapsed from diagnosis and with the severity of the disease. This IgA-LFIA immunosensor could be useful for noninvasively monitoring early immune responses to COVID-19 and for investigating the diagnostic/prognostic utility of salivary IgA in the context of large-scale screening to assess the efficacy of SARS-CoV-2 vaccines

Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum anti-SARS CoV-2 IgA in patients with COVID-19 disease

Simone Cavalera;Fabio Di Nardo;Sergio Rosati;Barbara Colitti;Claudio Baggiani;Laura Anfossi
2021-01-01

Abstract

To accurately diagnose COVID-19 infection and its time-dependent progression, the rapid, sensitive, and noninvasive determination of immunoglobulins A specific to SARS-CoV-2 (IgA) in saliva and serum is needed to complement tests that detect immunoglobulins G and M. We have developed a dual optical/chemiluminescence format of a lateral flow immunoassay (LFIA) immunosensor for IgA in serum and saliva. A recombinant nucleocapsid antigen specifically captures SARS-CoV-2 antibodies in patient specimens. A labelled anti-human IgA reveals the bound IgA fraction. A dual colorimetric and chemiluminescence detection enables the affordable and ultrasensitive determination of IgA to SARS-CoV-2. Specifically, a simple smartphone-camera-based device measures the colour signal provided by nanogold-labelled anti-human IgA. For the ultrasensitive chemiluminescence transduction, we used a contact imaging portable device based on cooled CCD, and measured the light signal resulting from the reaction of the HRP-labelled anti-human IgA with a H2O2/luminol/enhancers substrate. A total of 25 serum and 9 saliva samples from infected and/or recovered individuals were analysed by the colorimetric LFIA, which was sensitive and reproducible enough for the semi-quantification of IgA in subjects with a strong serological response and in the early stage of COVID-19 infection. Switching to CL detection, the same immunosensor exhibited higher detection capability, revealing the presence of salivary IgA in infected individuals. For the patients included in the study (n = 4), the level of salivary IgA correlated with the time elapsed from diagnosis and with the severity of the disease. This IgA-LFIA immunosensor could be useful for noninvasively monitoring early immune responses to COVID-19 and for investigating the diagnostic/prognostic utility of salivary IgA in the context of large-scale screening to assess the efficacy of SARS-CoV-2 vaccines
2021
172
112765
112770
Aldo Roda; Simone Cavalera; Fabio Di Nardo; Donato Calabria; Sergio Rosati; Patrizia Simoni; Barbara Colitti; Claudio Baggiani; Matilde Roda; ...espandi
File in questo prodotto:
File Dimensione Formato  
bb21_172_112765.pdf

Accesso riservato

Descrizione: paper
Tipo di file: PDF EDITORIALE
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
bb21_172_112765_draft.pdf

Accesso aperto

Descrizione: preprint
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 995.62 kB
Formato Adobe PDF
995.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1762790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 153
  • ???jsp.display-item.citation.isi??? 131
social impact