On-target resistance to next-generation TRK inhibitors in TRK fusion-positive cancers is largely uncharacterized. In patients with these tumors, we found that TRK xDFG mutations confer resistance to type I next-generation TRK inhibitors designed to maintain potency against several kinase domain mutations. Computational modeling and biochemical assays showed that TRKA G667 and TRKC G696 xDFG substitutions reduce drug binding by generating steric hindrance. Concurrently, these mutations stabilize the inactive (DFG-out) conformations of the kinases, thus sensitizing these kinases to type II TRK inhibitors. Consistently, type II inhibitors impede the growth and TRK-mediated signaling of xDFG-mutant isogenic and patient-derived models. Collectively, these data demonstrate that adaptive conformational resistance can be abrogated by shifting kinase engagement modes. Given the prior identification of paralogous xDFG resistance mutations in other oncogene-addicted cancers, these findings provide insights into rational type II drug design by leveraging inhibitor class affinity switching to address recalcitrant resistant alterations.

TRK xDFG mutations trigger a sensitivity switch from type I to II kinase inhibitors

Arena, Sabrina;Bardelli, Alberto;
2021-01-01

Abstract

On-target resistance to next-generation TRK inhibitors in TRK fusion-positive cancers is largely uncharacterized. In patients with these tumors, we found that TRK xDFG mutations confer resistance to type I next-generation TRK inhibitors designed to maintain potency against several kinase domain mutations. Computational modeling and biochemical assays showed that TRKA G667 and TRKC G696 xDFG substitutions reduce drug binding by generating steric hindrance. Concurrently, these mutations stabilize the inactive (DFG-out) conformations of the kinases, thus sensitizing these kinases to type II TRK inhibitors. Consistently, type II inhibitors impede the growth and TRK-mediated signaling of xDFG-mutant isogenic and patient-derived models. Collectively, these data demonstrate that adaptive conformational resistance can be abrogated by shifting kinase engagement modes. Given the prior identification of paralogous xDFG resistance mutations in other oncogene-addicted cancers, these findings provide insights into rational type II drug design by leveraging inhibitor class affinity switching to address recalcitrant resistant alterations.
2021
11
1
126
141
https://pmc.ncbi.nlm.nih.gov/articles/PMC8012405/
Cancer genetics, Oncogenes, Protein Kinase Inhibitors, trkA Receptor
Cocco, Emiliano; Lee, Ji Eun; Kannan, Srinivasaraghavan; Schram, Alison M; Won, Helen H; Shifman, Sophie; Kulick, Amanda; Baldino, Laura; Toska, Eneda...espandi
File in questo prodotto:
File Dimensione Formato  
Cocco et al 2020 cancer disc PDF EDITORIALE.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.64 MB
Formato Adobe PDF
4.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1764681
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact