Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by unpaired blood glycaemia maintenance. T2DM can be treated by inhibiting carbohydrate hydrolyzing enzymes (α-amylases and α-glucosidases) to decrease postprandial hyperglycemia. Acarbose and voglibose are inhibitors used in clinical practice. However, these drugs are associated with unpleasant gastrointestinal side effects. This study explores new α-amylase inhibitors deriving from plant volatile specialized metabolites. Sixty-two essential oils (EOs) from different plant species and botanical families were subjected to α-amylase in vitro enzymatic assay and chemically characterized using gas chromatography coupled to mass spectrometry. Several EOs were found to be potential α-amylase inhibitors, and Eucalyptus radiata, Laurus nobilis, and Myristica fragrans EOs displayed inhibitory capacities comparable to that of the positive control (i.e., acarbose). A bio-guided fractionation approach was adopted to isolate and identify the active fractions/compounds of Eucalyptus radiata and Myristica fragrans EOs. The bio-guided fractionation revealed that EOs α-amylase inhibitory activity is often the result of antagonist, additive, or synergistic interactions among their bioactive constituents and led to the identification of 1,8-cineole, 4-terpineol, α-terpineol, α-pinene, and β-pinene as bioactive compounds, also confirmed when they were tested singularly. These results demonstrate that EO oils are a promising source of potential α-amylase inhibitors.
Bio-guided fractionation driven by in vitro α-amylase inhibition assays of essential oils bearing specialized metabolites with potential hypoglycemic activity
Capetti F.First
;Cagliero C.;Marengo A.;Bicchi C.;Rubiolo P.;Sgorbini B.
Last
2020-01-01
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by unpaired blood glycaemia maintenance. T2DM can be treated by inhibiting carbohydrate hydrolyzing enzymes (α-amylases and α-glucosidases) to decrease postprandial hyperglycemia. Acarbose and voglibose are inhibitors used in clinical practice. However, these drugs are associated with unpleasant gastrointestinal side effects. This study explores new α-amylase inhibitors deriving from plant volatile specialized metabolites. Sixty-two essential oils (EOs) from different plant species and botanical families were subjected to α-amylase in vitro enzymatic assay and chemically characterized using gas chromatography coupled to mass spectrometry. Several EOs were found to be potential α-amylase inhibitors, and Eucalyptus radiata, Laurus nobilis, and Myristica fragrans EOs displayed inhibitory capacities comparable to that of the positive control (i.e., acarbose). A bio-guided fractionation approach was adopted to isolate and identify the active fractions/compounds of Eucalyptus radiata and Myristica fragrans EOs. The bio-guided fractionation revealed that EOs α-amylase inhibitory activity is often the result of antagonist, additive, or synergistic interactions among their bioactive constituents and led to the identification of 1,8-cineole, 4-terpineol, α-terpineol, α-pinene, and β-pinene as bioactive compounds, also confirmed when they were tested singularly. These results demonstrate that EO oils are a promising source of potential α-amylase inhibitors.File | Dimensione | Formato | |
---|---|---|---|
plants-09-01242.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
747.44 kB
Formato
Adobe PDF
|
747.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.