The detection of testosterone abuse in sports is routinely achieved through the 'steroidal module' of the Athlete Biological Passport by GC-MS(/MS) quantification of selected endogenous anabolic androgenic steroids (EAAS) from athletes' urines. To overcome some limitations of the "urinary steroid profile" such as the presence of confounding factors (ethnicity, enzyme polymorphism, bacterial contamination, and ethanol), ultrahigh performance liquid chromatography (UHPLC) measurements of blood concentrations of testosterone, its major metabolites, and precursors could represent an interesting and complementary strategy. In this work, two UHPLC-MS/MS methods were developed for the quantification of testosterone and related compounds in human serum, including major progestogens, corticoids, and estrogens. The validated methods were then used for the analyses of serum samples collected from 19 healthy male volunteers after oral and transdermal testosterone administration. Results from unsupervised multiway analysis allowed variations of target analytes to be assessed simultaneously over a 96-h time period. Except for alteration of concentration values due to the circadian rhythm, which concerns mainly corticosteroids, DHEA, and progesterone, significant variations linked to the oral and transdermal testosterone administration were observed for testosterone, DHT, and androstenedione. As a second step of analysis, the longitudinal monitoring of these biomarkers using intra-individual thresholds showed, in comparison to urine, significant improvements in the detection of testosterone administration, especially for volunteers with del/del genotype for phase II UGT2B17 enzyme, not sensitive to the main urinary marker, T/E ratio. A substantial extension of the detection window after transdermal testosterone administration was also observed in serum matrix. The longitudinal follow-up proposed in this study represents a first example of 'blood steroid profile' in doping control analysis, which can be proposed in the future as a complement to the 'urinary module' for improving steroid abuse detection capabilities.

Longitudinal monitoring of endogenous steroids in human serum by UHPLC-MS/MS as a tool to detect testosterone abuse in sports

Ponzetto F.
First
;
2016-01-01

Abstract

The detection of testosterone abuse in sports is routinely achieved through the 'steroidal module' of the Athlete Biological Passport by GC-MS(/MS) quantification of selected endogenous anabolic androgenic steroids (EAAS) from athletes' urines. To overcome some limitations of the "urinary steroid profile" such as the presence of confounding factors (ethnicity, enzyme polymorphism, bacterial contamination, and ethanol), ultrahigh performance liquid chromatography (UHPLC) measurements of blood concentrations of testosterone, its major metabolites, and precursors could represent an interesting and complementary strategy. In this work, two UHPLC-MS/MS methods were developed for the quantification of testosterone and related compounds in human serum, including major progestogens, corticoids, and estrogens. The validated methods were then used for the analyses of serum samples collected from 19 healthy male volunteers after oral and transdermal testosterone administration. Results from unsupervised multiway analysis allowed variations of target analytes to be assessed simultaneously over a 96-h time period. Except for alteration of concentration values due to the circadian rhythm, which concerns mainly corticosteroids, DHEA, and progesterone, significant variations linked to the oral and transdermal testosterone administration were observed for testosterone, DHT, and androstenedione. As a second step of analysis, the longitudinal monitoring of these biomarkers using intra-individual thresholds showed, in comparison to urine, significant improvements in the detection of testosterone administration, especially for volunteers with del/del genotype for phase II UGT2B17 enzyme, not sensitive to the main urinary marker, T/E ratio. A substantial extension of the detection window after transdermal testosterone administration was also observed in serum matrix. The longitudinal follow-up proposed in this study represents a first example of 'blood steroid profile' in doping control analysis, which can be proposed in the future as a complement to the 'urinary module' for improving steroid abuse detection capabilities.
2016
408
3
705
719
Multiway data analysis; Serum; Steroid profile; Testosterone doping; UHPLC-MS/MS; Adult; Doping in Sports; Humans; Longitudinal Studies; Male; Steroids; Substance Abuse Detection; Tandem Mass Spectrometry; Testosterone; Young Adult
Ponzetto F.; Mehl F.; Boccard J.; Baume N.; Rudaz S.; Saugy M.; Nicoli R.
File in questo prodotto:
File Dimensione Formato  
01_Longitudinal.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1764992
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 64
social impact