Interferon-α (IFN-α) comprises a family of 13 cytokines involved in the modulation of antiviral, immune, and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-α signaling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to suppression of angiogenesis. In this study, we knocked-down the expression of seven established or candidate modulators of IFN-α response in endothelial cells to reconstruct a gene regulatory network and to investigate the antiangiogenic activity of IFN-α. This genetic perturbation approach, along with the analysis of interferon-induced gene expression dynamics, highlighted a complex and highly interconnected network, in which the angiostatic chemokine C-X-C Motif Chemokine Ligand 10 (CXCL10) was a central node targeted by multiple modulators. IFN-α-induced secretion of CXCL10 protein by endothelial cells was blunted by the silencing of Signal Transducer and Activator of Transcription 1 (STAT1) and of Interferon Regulatory Factor 1 (IRF1) and it was exacerbated by the silencing of Ubiquitin Specific Peptidase 18 (USP18). In vitro sprouting assay, which mimics in vivo angiogenesis, confirmed STAT1 as a positive modulator and USP18 as a negative modulator of IFN-α-mediated sprouting suppression. Our data reveal an unprecedented physiological regulation of angiogenesis in endothelial cells through a tonic IFN-α signaling, whose enhancement could represent a viable strategy to suppress tumor neoangiogenesis.

Genetic perturbation of IFN-α transcriptional modulators in human endothelial cells uncovers pivotal regulators of angiogenesis

Rosano S.;Noghero A.;Bussolino F.;
2020

Abstract

Interferon-α (IFN-α) comprises a family of 13 cytokines involved in the modulation of antiviral, immune, and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-α signaling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to suppression of angiogenesis. In this study, we knocked-down the expression of seven established or candidate modulators of IFN-α response in endothelial cells to reconstruct a gene regulatory network and to investigate the antiangiogenic activity of IFN-α. This genetic perturbation approach, along with the analysis of interferon-induced gene expression dynamics, highlighted a complex and highly interconnected network, in which the angiostatic chemokine C-X-C Motif Chemokine Ligand 10 (CXCL10) was a central node targeted by multiple modulators. IFN-α-induced secretion of CXCL10 protein by endothelial cells was blunted by the silencing of Signal Transducer and Activator of Transcription 1 (STAT1) and of Interferon Regulatory Factor 1 (IRF1) and it was exacerbated by the silencing of Ubiquitin Specific Peptidase 18 (USP18). In vitro sprouting assay, which mimics in vivo angiogenesis, confirmed STAT1 as a positive modulator and USP18 as a negative modulator of IFN-α-mediated sprouting suppression. Our data reveal an unprecedented physiological regulation of angiogenesis in endothelial cells through a tonic IFN-α signaling, whose enhancement could represent a viable strategy to suppress tumor neoangiogenesis.
18
3977
3986
Angiogenesis; CXCL10; IFN-α; Regulatory network; Transcriptional modulators
Ciccarese F.; Grassi A.; Pasqualini L.; Rosano S.; Noghero A.; Montenegro F.; Bussolino F.; Di Camillo B.; Finesso L.; Toffolo G.M.; Mitola S.; Indraccolo S.
File in questo prodotto:
File Dimensione Formato  
main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1765001
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact