We propose a mathematical model for the transmission dynamics of some strains of the bacterium Vibrio cholerae, responsible for the cholera disease in humans. We prove that, when the basic reproduction number is equal to one, a transcritical bifurcation occurs for which the endemic equilibrium emanates from the disease-free point. A control function is introduced into the model, representing the distribution of chlorine water tablets for water purification. An optimal control problem is then proposed and analyzed, where the goal is to determine the fraction of susceptible individuals who should have access to chlorine water tablets in order to minimize the total number of new infections plus the total cost associated with the distribution of chlorine water tablets, over the considered period of time. Finally, we consider real data of the cholera outbreak in Yemen, from April 27, 2017 to April 15, 2018, choosing the values of the parameters of the uncontrolled model that fit the real data. Using our optimal control results, we show, numerically, that the distribution of chlorine water tablets could have stopped, in a fast way, the worst cholera outbreak that ever occurred in human history. Due to the critical situation of Yemen, we also simulate the case where only a small percentage of susceptible individuals has access to chlorine water tablets and obtain an optimal control solution that decreases, substantially, the maximum number of infective individuals affected by the outbreak.

Optimal Control of Aquatic Diseases: A Case Study of Yemen’s Cholera Outbreak

Venturino E.
2020-01-01

Abstract

We propose a mathematical model for the transmission dynamics of some strains of the bacterium Vibrio cholerae, responsible for the cholera disease in humans. We prove that, when the basic reproduction number is equal to one, a transcritical bifurcation occurs for which the endemic equilibrium emanates from the disease-free point. A control function is introduced into the model, representing the distribution of chlorine water tablets for water purification. An optimal control problem is then proposed and analyzed, where the goal is to determine the fraction of susceptible individuals who should have access to chlorine water tablets in order to minimize the total number of new infections plus the total cost associated with the distribution of chlorine water tablets, over the considered period of time. Finally, we consider real data of the cholera outbreak in Yemen, from April 27, 2017 to April 15, 2018, choosing the values of the parameters of the uncontrolled model that fit the real data. Using our optimal control results, we show, numerically, that the distribution of chlorine water tablets could have stopped, in a fast way, the worst cholera outbreak that ever occurred in human history. Due to the critical situation of Yemen, we also simulate the case where only a small percentage of susceptible individuals has access to chlorine water tablets and obtain an optimal control solution that decreases, substantially, the maximum number of infective individuals affected by the outbreak.
2020
185
3
1008
1030
2018 cholera outbreak in Yemen; Equilibrium points; Feasibility and local stability; Optimal control; SIQRB cholera model
Lemos-Paiao A.P.; Silva C.J.; Torres D.F.M.; Venturino E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1765005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact