Parietaria judaica grows in highly calcareous environments, overcoming the low bioavailability of Fe caused by elevated pH. The aim of this work was to investigate the temporal dynamics of root exudation of P. judaica under Fe deficiency conditions. As high concentrations of bicarbonate and Ca2+ in calcareous soils interfere with the general plant mineral nutrition, two different alkaline growing conditions were applied to distinguish the effects due to the high pH from the responses induced by the presence of high calcium carbonate concentrations. Growth parameters and physiological responses were analyzed during a 7 day time course-shoot and root biomass, chlorophyll and flavonoid contents in leaves, root accumulation, and exudation of organic acids and phenolics were determined. Different responses were found in plants grown in the presence of bicarbonate and in the presence of an organic pH buffer, revealing a time- and condition-dependent response of P. judaica and suggesting a stronger stress in the buffer treatment. The high tolerance to alkaline conditions may be related to an earlier and greater exudation rate of phenolics, as well as to the synergistic effect of phenolics and carboxylic acids in root exudates in the late response. The identification of the main functional traits involved in tolerance to low Fe availability in a wild species could offer crucial inputs for breeding programs for application to crop species.
Temporal responses to direct and induced iron deficiency in Parietaria judaica
Islam M.;Mimmo T.;Vigani G.
2020-01-01
Abstract
Parietaria judaica grows in highly calcareous environments, overcoming the low bioavailability of Fe caused by elevated pH. The aim of this work was to investigate the temporal dynamics of root exudation of P. judaica under Fe deficiency conditions. As high concentrations of bicarbonate and Ca2+ in calcareous soils interfere with the general plant mineral nutrition, two different alkaline growing conditions were applied to distinguish the effects due to the high pH from the responses induced by the presence of high calcium carbonate concentrations. Growth parameters and physiological responses were analyzed during a 7 day time course-shoot and root biomass, chlorophyll and flavonoid contents in leaves, root accumulation, and exudation of organic acids and phenolics were determined. Different responses were found in plants grown in the presence of bicarbonate and in the presence of an organic pH buffer, revealing a time- and condition-dependent response of P. judaica and suggesting a stronger stress in the buffer treatment. The high tolerance to alkaline conditions may be related to an earlier and greater exudation rate of phenolics, as well as to the synergistic effect of phenolics and carboxylic acids in root exudates in the late response. The identification of the main functional traits involved in tolerance to low Fe availability in a wild species could offer crucial inputs for breeding programs for application to crop species.File | Dimensione | Formato | |
---|---|---|---|
Tato et al_2020_agronomy-10-01037.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
672.34 kB
Formato
Adobe PDF
|
672.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.