Virus-like particles (VLP) spontaneously assemble from viral structural proteins. They are naturally biocompatible and non-infectious. VLP can serve as a platform for many potential vaccine epitopes, display them in a dense repeating array, and elicit antibodies against non-immunogenic substances, including tumor-associated self-antigens. Genetic or chemical conjugation facilitates the multivalent display of a homologous or heterologous epitope. Most VLP range in diameter from 25 to 100 nm and, in most cases, drain freely into the lymphatic vessels and induce antibodies with high titers and affinity without the need for additional adjuvants. VLP administration can be performed using different strategies, regimens, and doses to improve the immunogenicity of the antigen they expose on their surface. This article summarizes the features of VLP and presents them as a relevant platform technology to address not only infectious diseases but also chronic diseases and cancer.

Virus-Like Particles as an Immunogenic Platform for Cancer Vaccines

Cavallo, Federica
Last
2020-01-01

Abstract

Virus-like particles (VLP) spontaneously assemble from viral structural proteins. They are naturally biocompatible and non-infectious. VLP can serve as a platform for many potential vaccine epitopes, display them in a dense repeating array, and elicit antibodies against non-immunogenic substances, including tumor-associated self-antigens. Genetic or chemical conjugation facilitates the multivalent display of a homologous or heterologous epitope. Most VLP range in diameter from 25 to 100 nm and, in most cases, drain freely into the lymphatic vessels and induce antibodies with high titers and affinity without the need for additional adjuvants. VLP administration can be performed using different strategies, regimens, and doses to improve the immunogenicity of the antigen they expose on their surface. This article summarizes the features of VLP and presents them as a relevant platform technology to address not only infectious diseases but also chronic diseases and cancer.
2020
12
5
1
20
cancer; immunotherapy; vaccine; virus-like particles
Caldeira, Jerri C; Perrine, Michael; Pericle, Federica; Cavallo, Federica
File in questo prodotto:
File Dimensione Formato  
Caldeira et al., Viruses 2020.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1765651
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact