Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes—rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10−18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10−13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. Conclusion: Large case–control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.

Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls

Giustetto C.;Giachino D. F.;
2021-01-01

Abstract

Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes—rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10−18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10−13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. Conclusion: Large case–control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.
2021
23
1
47
58
https://www.nature.com/articles/s41436-020-00946-5
ACMG/AMP guidelines; Brugada; LQTS; variant interpretation
Walsh R.; Lahrouchi N.; Tadros R.; Kyndt F.; Glinge C.; Postema P.G.; Amin A.S.; Nannenberg E.A.; Ware J.S.; Whiffin N.; Mazzarotto F.; Skoric-Milosavljevic D.; Krijger C.; Arbelo E.; Babuty D.; Barajas-Martinez H.; Beckmann B.M.; Bezieau S.; Bos J.M.; Breckpot J.; Campuzano O.; Castelletti S.; Celen C.; Clauss S.; Corveleyn A.; Crotti L.; Dagradi F.; de Asmundis C.; Denjoy I.; Dittmann S.; Ellinor P.T.; Ortuno C.G.; Giustetto C.; Gourraud J.-B.; Hazeki D.; Horie M.; Ishikawa T.; Itoh H.; Kaneko Y.; Kanters J.K.; Kimoto H.; Kotta M.-C.; Krapels I.P.C.; Kurabayashi M.; Lazarte J.; Leenhardt A.; Loeys B.L.; Lundin C.; Makiyama T.; Mansourati J.; Martins R.P.; Mazzanti A.; Morner S.; Napolitano C.; Ohkubo K.; Papadakis M.; Rudic B.; Molina M.S.; Sacher F.; Sahin H.; Sarquella-Brugada G.; Sebastiano R.; Sharma S.; Sheppard M.N.; Shimamoto K.; Shoemaker M.B.; Stallmeyer B.; Steinfurt J.; Tanaka Y.; Tester D.J.; Usuda K.; van der Zwaag P.A.; Van Dooren S.; Van Laer L.; Winbo A.; Winkel B.G.; Yamagata K.; Zumhagen S.; Volders P.G.A.; Lubitz S.A.; Antzelevitch C.; Platonov P.G.; Odening K.E.; Roden D.M.; Roberts J.D.; Skinner J.R.; Tfelt-Hansen J.; van den Berg M.P.; Olesen M.S.; Lambiase P.D.; Borggrefe M.; Hayashi K.; Rydberg A.; Nakajima T.; Yoshinaga M.; Saenen J.B.; Kaab S.; Brugada P.; Robyns T.; Giachino D.F.; Ackerman M.J.; Brugada R.; Brugada J.; Gimeno J.R.; Hasdemir C.; Guicheney P.; Priori S.G.; Schulze-Bahr E.; Makita N.; Schwartz P.J.; Shimizu W.; Aiba T.; Schott J.-J.; Redon R.; Ohno S.; Probst V.; Arnaout A.A.; Amelot M.; Anselme F.; Billon O.; Defaye P.; Dupuis J.-M.; Jesel L.; Laurent G.; Maury P.; Pasquie J.-L.; Wiart F.; Behr E.R.; Barc J.; Bezzina C.R.
File in questo prodotto:
File Dimensione Formato  
s41436-020-00946-5.pdf

Accesso aperto

Descrizione: pdf editoriale open access
Tipo di file: PDF EDITORIALE
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1766442
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 47
social impact