Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.

Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons

Akman, Muhlis;Belisario, Dimas Carolina;Salaroglio, Iris Chiara;Kopecka, Joanna;Donadelli, Massimo;Riganti, Chiara
2021-01-01

Abstract

Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
2021
Inglese
Esperti anonimi
40
1
28
44
17
Chemoresistance; Endoplasmic reticulum stress; Hypoxia; Hypoxia-inducible factor-1α; Unfolded protein response
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
7
03-CONTRIBUTO IN RIVISTA::03B-Review in Rivista / Rassegna della Lett. in Riv. / Nota Critica
open
262
info:eu-repo/semantics/article
Akman, Muhlis; Belisario, Dimas Carolina; Salaroglio, Iris Chiara; Kopecka, Joanna; Donadelli, Massimo; De Smaele, Enrico; Riganti, Chiara
File in questo prodotto:
File Dimensione Formato  
Akman, JECCR 2021.pdf

Accesso aperto

Descrizione: Akman, JECCR 2021
Tipo di file: PDF EDITORIALE
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1766499
Citazioni
  • ???jsp.display-item.citation.pmc??? 56
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 91
social impact