The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the three pesticides to induce an estrogenic activity was tested in MELN cells. When compared to 17β-estradiol, thiacloprid and imidacloprid induced an estrogenic activity at the highest concentrations tested with a relative potency of 5.4 × 10−10 and 3.7 × 10−9, respectively. Molecular dynamics and docking simulations predicted the potential binding sites and the binding mode of the three pesticides on the structure of the two key targets, providing a rational for their mechanism as EDCs. The results demonstrate that the three pesticides are potential EDCs as glyphosate acts as an aromatase inhibitor, whereas imidacloprid and thiacloprid can interfere with estrogen induced signaling.

Molecular basis for endocrine disruption by pesticides targeting aromatase and estrogen receptor

Zhang C.;Schiliro Tiziana.;Gea M.;Gilardi G.;Di Nardo G.
2020-01-01

Abstract

The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the three pesticides to induce an estrogenic activity was tested in MELN cells. When compared to 17β-estradiol, thiacloprid and imidacloprid induced an estrogenic activity at the highest concentrations tested with a relative potency of 5.4 × 10−10 and 3.7 × 10−9, respectively. Molecular dynamics and docking simulations predicted the potential binding sites and the binding mode of the three pesticides on the structure of the two key targets, providing a rational for their mechanism as EDCs. The results demonstrate that the three pesticides are potential EDCs as glyphosate acts as an aromatase inhibitor, whereas imidacloprid and thiacloprid can interfere with estrogen induced signaling.
2020
17
16
1
18
https://www.mdpi.com/1660-4601/17/16/5664/htm
Aromatase; Endocrine disrupting chemical; Estrogen receptor; Estrogenic activity; Gene reporter assay; MELN allosteric inhibition; Molecular dynamics; Neonicotinoids; Pesticides; Aromatase; Aromatase Inhibitors; Estrogens; Humans; Receptors, Estrogen; Endocrine Disruptors; Pesticides
Zhang C.; Schiliro Tiziana.; Gea M.; Bianchi S.; Spinello A.; Magistrato A.; Gilardi G.; Di Nardo G.
File in questo prodotto:
File Dimensione Formato  
ijerph-17-05664.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1766793
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 31
social impact