We propose a Bayesian Mixed Multinomial Logit Model (MMLM) to deal with the critical issue of choice-set heterogeneity often present in policy evaluation studies enriched with microsimulated data. We also exploit the comparison of three clustering methods to capture decision-makers’ heterogeneity through a specific random effect. A case study, which aims to describe the determinants of labour choices of females in couples with microsimulated fiscal variables, is the test-bed for our methodological proposal. By virtue of this very flexible specification of the random components, the Bayesian MMLM proves to be more accurate, parsimonious and consistent in terms of point estimates with the research field than other models.
A Bayesian Mixed Multinomial Logit Model for choice-sets and decision-makers’ heterogeneity
Carota C.;Nava C. R.
2020-01-01
Abstract
We propose a Bayesian Mixed Multinomial Logit Model (MMLM) to deal with the critical issue of choice-set heterogeneity often present in policy evaluation studies enriched with microsimulated data. We also exploit the comparison of three clustering methods to capture decision-makers’ heterogeneity through a specific random effect. A case study, which aims to describe the determinants of labour choices of females in couples with microsimulated fiscal variables, is the test-bed for our methodological proposal. By virtue of this very flexible specification of the random components, the Bayesian MMLM proves to be more accurate, parsimonious and consistent in terms of point estimates with the research field than other models.File | Dimensione | Formato | |
---|---|---|---|
AEL_20.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
666.43 kB
Formato
Adobe PDF
|
666.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.