The Deep Eutectic Solvents/Systems (DESs) choline chloride:urea (xChCl = 0.33) and choline chloride:glycolic acid (xChCl = 0.5) were investigated using viscosity-corrected 35Cl NMR spectroscopy and molecular dynamics simulations to probe the role of chloride as a function of water content. Three Cl- solvation regimes are revealed, with high-symmetry environments for pure and highly dilute DES, and an unusual low-symmetry interstitial region where the primary coordination sphere is most disordered. This journal is

Connecting chloride solvation with hydration in deep eutectic systems

Mannu A.;
2021-01-01

Abstract

The Deep Eutectic Solvents/Systems (DESs) choline chloride:urea (xChCl = 0.33) and choline chloride:glycolic acid (xChCl = 0.5) were investigated using viscosity-corrected 35Cl NMR spectroscopy and molecular dynamics simulations to probe the role of chloride as a function of water content. Three Cl- solvation regimes are revealed, with high-symmetry environments for pure and highly dilute DES, and an unusual low-symmetry interstitial region where the primary coordination sphere is most disordered. This journal is
2021
23
1
107
111
Di Pietro M.E.; Hammond O.; Van Den Bruinhorst A.; Mannu A.; Padua A.; Mele A.; Costa Gomes M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1768153
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact