We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations - comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution chelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements - and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P b = 5.19672 ± 0.00049 days, a mass of M b = 7.17 ± 0.66 M ⊕, and a radius of R b = 2.68-0.18+0.19 R ⊕, whereas the outer warm Neptune, TOI-421 c, has a period of P c = 16.06819 ± 0.00035 days, a mass of M c = 16.42-1.04+1.06 M ⊕, a radius of R c = 5.09-0.15+0.16 R ⊕, and a density of ρ c = 0.685-0.072+0.080 g cm-3. With its characteristics, the outer planet (ρ c = 0.685-0.072+0.080 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.

The Multiplanet System TOI-421

Gandolfi D.;Serrano L. M.;
2020-01-01

Abstract

We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations - comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution chelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements - and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P b = 5.19672 ± 0.00049 days, a mass of M b = 7.17 ± 0.66 M ⊕, and a radius of R b = 2.68-0.18+0.19 R ⊕, whereas the outer warm Neptune, TOI-421 c, has a period of P c = 16.06819 ± 0.00035 days, a mass of M c = 16.42-1.04+1.06 M ⊕, a radius of R c = 5.09-0.15+0.16 R ⊕, and a density of ρ c = 0.685-0.072+0.080 g cm-3. With its characteristics, the outer planet (ρ c = 0.685-0.072+0.080 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
2020
Inglese
Esperti anonimi
160
3
114
144
31
https://iopscience.iop.org/article/10.3847/1538-3881/aba124
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
113
Carleo I.; Gandolfi D.; Barragan O.; Livingston J.H.; Persson C.M.; Lam K.W.F.; Vidotto A.; Lund M.B.; D'angelo C.V.; Collins K.A.; Fossati L.; Howard...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Carleo_2020.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.7 MB
Formato Adobe PDF
4.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1768964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 16
social impact