The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38+0.84-0.85 ms-1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40+1.90-1.92 M⊕. Modelling the TESS light curve returns a planet radius of 3.42+0.13-0.14 R⊕, and therefore the planet bulk density is found to be 3.08+0.44-0.46 g cm-3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3+1.2-2.3 per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.

TOI-132 b: A short-period planet in the Neptune desert transiting a v = 11.3 G-type star

Gandolfi D.;
2020-01-01

Abstract

The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38+0.84-0.85 ms-1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40+1.90-1.92 M⊕. Modelling the TESS light curve returns a planet radius of 3.42+0.13-0.14 R⊕, and therefore the planet bulk density is found to be 3.08+0.44-0.46 g cm-3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3+1.2-2.3 per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.
2020
Inglese
Esperti anonimi
493
1
973
985
13
https://academic.oup.com/mnras/article-abstract/493/1/973/5717324?redirectedFrom=fulltext
Planetary systems; Planets and satellites: fundamental parameters; Techniques: photometric; Techniques: radial velocities
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
52
Diaz M.R.; Jenkins J.S.; Gandolfi D.; Lopez E.D.; Soto M.G.; Cortes-Zuleta P.; Berdinas Z.M.; Stassun K.G.; Collins K.A.; Vines J.I.; Ziegler C.; Frid...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Diaz_2020.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1768986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact