The Fourier galaxy bispectrum is complex, with the imaginary part arising from leading-order relativistic corrections, due to Doppler, gravitational redshift and related line-of-sight effects in redshift space. The detection of the imaginary part of the bispectrum is potentially a smoking gun signal of relativistic contributions. We investigate whether next-generation spectroscopic surveys could make such a detection. For a Stage IV spectroscopic Hα survey similar to Euclid, we find that the cumulative signal to noise of this relativistic signature is (10). Long-mode relativistic effects couple to short-mode Newtonian effects in the galaxy bispectrum, but not in the galaxy power spectrum. This is the basis for detectability of relativistic effects in the bispectrum of a single galaxy survey, whereas the power spectrum requires multiple galaxy surveys to detect the corresponding signal.

Detecting the relativistic galaxy bispectrum

Camera S.
Last
2020-01-01

Abstract

The Fourier galaxy bispectrum is complex, with the imaginary part arising from leading-order relativistic corrections, due to Doppler, gravitational redshift and related line-of-sight effects in redshift space. The detection of the imaginary part of the bispectrum is potentially a smoking gun signal of relativistic contributions. We investigate whether next-generation spectroscopic surveys could make such a detection. For a Stage IV spectroscopic Hα survey similar to Euclid, we find that the cumulative signal to noise of this relativistic signature is (10). Long-mode relativistic effects couple to short-mode Newtonian effects in the galaxy bispectrum, but not in the galaxy power spectrum. This is the basis for detectability of relativistic effects in the bispectrum of a single galaxy survey, whereas the power spectrum requires multiple galaxy surveys to detect the corresponding signal.
2020
2020
3
065
065
Maartens R.; Jolicoeur S.; Umeh O.; Weerd E.M.D.; Clarkson C.; Camera S.
File in questo prodotto:
File Dimensione Formato  
Maartens_2020_J._Cosmol._Astropart._Phys._2020_065.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1769056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 25
social impact