In mines in Katanga region of the Democratic Republic of Congo (DRC), cobalt is commonly recovered from oxy-hydroxide minerals (e.g. heterogenite, asbolane) using a sulfuric acid leach under reducing conditions. However, most of the leaching operations show yields of Co, below 80% so the current study focused on determining the reasons for the recovery shortfall. A range of samples were investigated comprising a detailed mineralogical characterization of five concentrate and leached samples from different mine plants in the Katanga region: namely Kalukuluku, Mutanda, Mabaya, Kamwali and Fungurume mines. The analyses were carried out prior to and after leaching treatments using a combination of chemical (ICP-AES) and mineralogical techniques (XRD, automated mineralogy, SEM-EDS and X-ray mapping). The results revealed that heterogenite and asbolane occur in samples both prior to and after leaching: this confirms the ineffective leaching of these minerals or/and the presence of Co-bearing refractory minerals and other phases inhibiting the diffusion of leachate. SEM-EDS and X-ray mapping of leached samples showed that both heterogenite and asbolane are commonly finely intergrown with clays and Fe-oxy-hydroxides (FOH). These outcomes are in agreement with automated mineralogy results for the Co deportment, showing that Co is mainly hosted in: (a) pure heterogenite particles, (b) heterogenite intergrown with other minerals, (c) fine-grain heterogenite (≤1µm) enclosed in clays, and (d) clays or/and FOH adsorbing Co in the structure. The Co recovery inefficiency is a result of the mineralogical complexity of the ores, making the current processing strategy sub-optimal. In conclusion the two main reasons for the incomplete recovery are: firstly mineral liberation issues and secondly the presence of un-recoverable elemental Co within the structure of refractory phases.
Mineralogical reconciliation of cobalt recovery from the acid leaching of oxide ores from five deposits in Katanga (DRC)
Santoro L.
First
;
2019-01-01
Abstract
In mines in Katanga region of the Democratic Republic of Congo (DRC), cobalt is commonly recovered from oxy-hydroxide minerals (e.g. heterogenite, asbolane) using a sulfuric acid leach under reducing conditions. However, most of the leaching operations show yields of Co, below 80% so the current study focused on determining the reasons for the recovery shortfall. A range of samples were investigated comprising a detailed mineralogical characterization of five concentrate and leached samples from different mine plants in the Katanga region: namely Kalukuluku, Mutanda, Mabaya, Kamwali and Fungurume mines. The analyses were carried out prior to and after leaching treatments using a combination of chemical (ICP-AES) and mineralogical techniques (XRD, automated mineralogy, SEM-EDS and X-ray mapping). The results revealed that heterogenite and asbolane occur in samples both prior to and after leaching: this confirms the ineffective leaching of these minerals or/and the presence of Co-bearing refractory minerals and other phases inhibiting the diffusion of leachate. SEM-EDS and X-ray mapping of leached samples showed that both heterogenite and asbolane are commonly finely intergrown with clays and Fe-oxy-hydroxides (FOH). These outcomes are in agreement with automated mineralogy results for the Co deportment, showing that Co is mainly hosted in: (a) pure heterogenite particles, (b) heterogenite intergrown with other minerals, (c) fine-grain heterogenite (≤1µm) enclosed in clays, and (d) clays or/and FOH adsorbing Co in the structure. The Co recovery inefficiency is a result of the mineralogical complexity of the ores, making the current processing strategy sub-optimal. In conclusion the two main reasons for the incomplete recovery are: firstly mineral liberation issues and secondly the presence of un-recoverable elemental Co within the structure of refractory phases.File | Dimensione | Formato | |
---|---|---|---|
5. Santoro et al_2019-Min engeneering.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
12.82 MB
Formato
Adobe PDF
|
12.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.