Compressive sensing promises to enable bandwidth-efficient onboard compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting graphical processing unit (GPU)’s parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a 10-fold signal recovery speedup, thanks to adhoc parallelization of matrix–vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain
GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring
Fiandrotti, Attilio
First
;
2018-01-01
Abstract
Compressive sensing promises to enable bandwidth-efficient onboard compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting graphical processing unit (GPU)’s parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a 10-fold signal recovery speedup, thanks to adhoc parallelization of matrix–vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domainFile | Dimensione | Formato | |
---|---|---|---|
GPU.pdf
Accesso riservato
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.