Blood flow (BF) to exercising muscles is susceptible to variations of intensity, and duration of skeletal muscle contractions, cardiac cycle, blood velocity, and vessel dilation. During cyclic muscle activity, these elements may change proportionally with or without direct optimal temporal alignment, likely influencing BF to active muscle. Ideally, the pulsed delivery of blood to active muscle timed with the inactive phase of muscle duty-cycle would enhance the peak and average BF. To investigate the phenomenon of muscle contraction and pulse synchronicity, electrically evoked muscle contractions (trains of 20 Hz, 200-ms duration) were synchronized with each systolic phase of the anterograde blood velocity spectrum (aBVS). Specifically, unilateral quadriceps contractions matched in-phase (IP) with the aBVS were compared with contractions matched out-of-phase (OP) with the aBVS in 10 healthy participants (26 ± 3 yr). During each trial, femoral BF of the contracting limb and central hemodynamics were recorded for 5 min with an ultrasound Doppler, a plethysmograph, and a cardioimpedance device. At steady state (5th min) IP BF (454 ± 30 mL/min) and vascular conductance (4.3 ± 0.2 mL·min-1·mmHg-1), and OP MAP (108 ± 2 mmHg) were significantly lower (P < 0.001) in comparison to OP BF (784 ± 25 mL/min) and vascular conductance (6.7 ± 0.2 mL·min-1·mmHg-1), and IP MAP (113 ± 3 mmHg). On the contrary, no significant difference (all, P > 0.05) was observed between IP and OP central hemodynamics (HR: 79 ± 10 vs. 76 ± 11 bpm, CO: 8.0 ± 1.6 vs. 7.3 ± 1.6 L/min), and ventilatory patterns (V· E:14 ± 2 vs. 14 ± 1 L/min, V· O2:421 ± 70 vs. 397 ± 34 mL/min). The results suggest that muscle contractions occurring during OP that do not interfere with aBVS elicit a maximization of muscle functional hyperemia.

Timed synchronization of muscle contraction to heartbeat enhances muscle hyperemia

Tarperi C.;Schena F.;
2020-01-01

Abstract

Blood flow (BF) to exercising muscles is susceptible to variations of intensity, and duration of skeletal muscle contractions, cardiac cycle, blood velocity, and vessel dilation. During cyclic muscle activity, these elements may change proportionally with or without direct optimal temporal alignment, likely influencing BF to active muscle. Ideally, the pulsed delivery of blood to active muscle timed with the inactive phase of muscle duty-cycle would enhance the peak and average BF. To investigate the phenomenon of muscle contraction and pulse synchronicity, electrically evoked muscle contractions (trains of 20 Hz, 200-ms duration) were synchronized with each systolic phase of the anterograde blood velocity spectrum (aBVS). Specifically, unilateral quadriceps contractions matched in-phase (IP) with the aBVS were compared with contractions matched out-of-phase (OP) with the aBVS in 10 healthy participants (26 ± 3 yr). During each trial, femoral BF of the contracting limb and central hemodynamics were recorded for 5 min with an ultrasound Doppler, a plethysmograph, and a cardioimpedance device. At steady state (5th min) IP BF (454 ± 30 mL/min) and vascular conductance (4.3 ± 0.2 mL·min-1·mmHg-1), and OP MAP (108 ± 2 mmHg) were significantly lower (P < 0.001) in comparison to OP BF (784 ± 25 mL/min) and vascular conductance (6.7 ± 0.2 mL·min-1·mmHg-1), and IP MAP (113 ± 3 mmHg). On the contrary, no significant difference (all, P > 0.05) was observed between IP and OP central hemodynamics (HR: 79 ± 10 vs. 76 ± 11 bpm, CO: 8.0 ± 1.6 vs. 7.3 ± 1.6 L/min), and ventilatory patterns (V· E:14 ± 2 vs. 14 ± 1 L/min, V· O2:421 ± 70 vs. 397 ± 34 mL/min). The results suggest that muscle contractions occurring during OP that do not interfere with aBVS elicit a maximization of muscle functional hyperemia.
2020
128
4
805
812
electrical stimulation; muscle circulation; synchronization; vascular conductance
Giuriato G.; Ives S.J.; Tarperi C.; Bortolan L.; Ruzzante F.; Pedrinolla A.; Martignon C.; Laginestra F.G.; Cevese A.; Schena F.; Venturelli M....espandi
File in questo prodotto:
File Dimensione Formato  
Giuriato 2020 - JAP - Timed synchronization of muscle contraction to heartbeat enhances muscle hyperemia.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 808.97 kB
Formato Adobe PDF
808.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1770420
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact