Objective High blood pressure (BP) is associated with reduced pain sensitivity, known as BP-related hypoalgesia. The underlying neural mechanisms remain uncertain, yet arterial baroreceptor signaling, occurring at cardiac systole, is implicated. We examined normotensives using functional neuroimaging and pain stimulation during distinct phases of the cardiac cycle to test the hypothesized neural mediation of baroreceptor-induced attenuation of pain. Methods Eighteen participants (10 women; 32.7 (6.5) years) underwent BP monitoring for 1 week at home, and individual pain thresholds were determined in the laboratory. Subsequently, participants were administered unpredictable painful and nonpainful electrocutaneous shocks (stimulus type), timed to occur either at systole or at diastole (cardiac phase) in an event-related design. After each trial, participants evaluated their subjective experience. Results Subjective pain was lower for painful stimuli administered at systole compared with diastole, F(1, 2283) = 4.82, p = 0.03. Individuals with higher baseline BP demonstrated overall lower pain perception, F(1, 2164) = 10.47, p < .0001. Within the brain, painful stimulation activated somatosensory areas, prefrontal cortex, cingulate cortex, posterior insula, amygdala, and the thalamus. Stimuli delivered during systole (concurrent with baroreceptor discharge) activated areas associated with heightened parasympathetic drive. No stimulus type by cardiac phase interaction emerged except for a small cluster located in the right parietal cortex. Conclusions We confirm the negative associations between BP and pain, highlighting the antinociceptive impact of baroreceptor discharge. Neural substrates associated with baroreceptor/BP-related hypoalgesia include superior parietal lobule, precentral, and lingual gyrus, regions typically involved in the cognitive aspects of pain experience.

Brain-Heart Pathways to Blood Pressure-Related Hypoalgesia

Bozzali M;
2018-01-01

Abstract

Objective High blood pressure (BP) is associated with reduced pain sensitivity, known as BP-related hypoalgesia. The underlying neural mechanisms remain uncertain, yet arterial baroreceptor signaling, occurring at cardiac systole, is implicated. We examined normotensives using functional neuroimaging and pain stimulation during distinct phases of the cardiac cycle to test the hypothesized neural mediation of baroreceptor-induced attenuation of pain. Methods Eighteen participants (10 women; 32.7 (6.5) years) underwent BP monitoring for 1 week at home, and individual pain thresholds were determined in the laboratory. Subsequently, participants were administered unpredictable painful and nonpainful electrocutaneous shocks (stimulus type), timed to occur either at systole or at diastole (cardiac phase) in an event-related design. After each trial, participants evaluated their subjective experience. Results Subjective pain was lower for painful stimuli administered at systole compared with diastole, F(1, 2283) = 4.82, p = 0.03. Individuals with higher baseline BP demonstrated overall lower pain perception, F(1, 2164) = 10.47, p < .0001. Within the brain, painful stimulation activated somatosensory areas, prefrontal cortex, cingulate cortex, posterior insula, amygdala, and the thalamus. Stimuli delivered during systole (concurrent with baroreceptor discharge) activated areas associated with heightened parasympathetic drive. No stimulus type by cardiac phase interaction emerged except for a small cluster located in the right parietal cortex. Conclusions We confirm the negative associations between BP and pain, highlighting the antinociceptive impact of baroreceptor discharge. Neural substrates associated with baroreceptor/BP-related hypoalgesia include superior parietal lobule, precentral, and lingual gyrus, regions typically involved in the cognitive aspects of pain experience.
80
9
845
852
Ottaviani C; Fagioli S; Mattei E; Censi F; Edwards L; Macaluso E; Bozzali M; Critchley HD; Calcagnini G
File in questo prodotto:
File Dimensione Formato  
153-Ottaviani-PsychosomMed2018.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 334.87 kB
Formato Adobe PDF
334.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1771095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact