We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 h of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of log[Jann(0.5°)∕GeV2cm−5]=19.35±0.37. We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the τ−τ+ final state, where a cross section for annihilation down to 〈σannv〉=3.05×10−24 cm3 s−1 is excluded.

A search for dark matter in Triangulum II with the MAGIC telescopes

Depaoli D.;Vigorito C. F.;
2020-01-01

Abstract

We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 h of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of log[Jann(0.5°)∕GeV2cm−5]=19.35±0.37. We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the τ−τ+ final state, where a cross section for annihilation down to 〈σannv〉=3.05×10−24 cm3 s−1 is excluded.
2020
28
100529
1
9
Dark matter; Dwarf spheroidal satellite galaxies; Imaging air Cherenkov telescopes; Indirect searches; Triangulum II
Acciari V.A.; Ansoldi S.; Antonelli L.A.; Arbet Engels A.; Baack D.; Babic A.; Banerjee B.; Barres de Almeida U.; Barrio J.A.; Becerra Gonzalez J.; Bednarek W.; Bellizzi L.; Bernardini E.; Berti A.; Besenrieder J.; Bhattacharyya W.; Bigongiari C.; Biland A.; Blanch O.; Bonnoli G.; Bosnjak Z.; Busetto G.; Carosi R.; Ceribella G.; Chai Y.; Chilingarian A.; Cikota S.; Colak S.M.; Colin U.; Colombo E.; Contreras J.L.; Cortina J.; Covino S.; D'Elia V.; Da Vela P.; Dazzi F.; De Angelis A.; De Lotto B.; Delfino M.; Delgado J.; Depaoli D.; Di Pierro F.; Di Venere L.; Do Souto Espineira E.; Dominis Prester D.; Donini A.; Dorner D.; Doro M.; Elsaesser D.; Fallah Ramazani V.; Fattorini A.; Ferrara G.; Fidalgo D.; Foffano L.; Fonseca M.V.; Font L.; Fruck C.; Fukami S.; Garcia Lopez R.J.; Garczarczyk M.; Gasparyan S.; Gaug M.; Giglietto N.; Giordano F.; Gliwny P.; Godinovic N.; Green D.; Green J.G.; Guberman D.; Hadasch D.; Hahn A.; Herrera J.; Hoang J.; Hrupec D.; Hutten M.; Inada T.; Inoue S.; Ishio K.; Iwamura Y.; Jouvin L.; Kerszberg D.; Kubo H.; Kushida J.; Lamastra A.; Lelas D.; Leone F.; Lindfors E.; Lombardi S.; Longo F.; Lopez M.; Lopez-Coto R.; Lopez-Oramas A.; Loporchio S.; Machado de Oliveira Fraga B.; Maggio C.; Majumdar P.; Makariev M.; Mallamaci M.; Maneva G.; Manganaro M.; Mannheim K.; Maraschi L.; Mariotti M.; Martinez M.; Mazin D.; Micanovic S.; Miceli D.; Miener T.; Minev M.; Miranda J.M.; Mirzoyan R.; Molina E.; Moralejo A.; Morcuende D.; Moreno V.; Moretti E.; Munar-Adrover P.; Neustroev V.; Nigro C.; Nilsson K.; Ninci D.; Nishijima K.; Noda K.; Nogues L.; Nozaki S.; Paiano S.; Palacio J.; Palatiello M.; Paneque D.; Paoletti R.; Paredes J.M.; Penil P.; Peresano M.; Persic M.; Prada Moroni P.G.; Prandini E.; Puljak I.; Rhode W.; Ribo M.; Rico J.; Righi C.; Rugliancich A.; Saha L.; Sahakyan N.; Saito T.; Sakurai S.; Satalecka K.; Saturni F.G.; Schmidt K.; Schweizer T.; Sitarek J.; Snidaric I.; Sobczynska D.; Somero A.; Stamerra A.; Strom D.; Suda Y.; Suric T.; Takahashi M.; Tavecchio F.; Temnikov P.; Terzic T.; Teshima M.; Torres-Alba N.; Tosti L.; Vagelli V.; van Scherpenberg J.; Vanzo G.; Vazquez Acosta M.; Vigorito C.F.; Vitale V.; Vovk I.; Will M.; Zaric D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1772016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact