The good water solubility displayed by most starch-derived maltodextrins has limited their use when specific mechanical properties are required, particularly when working in aqueous media. As a result, numerous attempts to cross-link such polysaccharides to obtain cross-linked polymers have been reported; in this context, non-toxic and biocompatible water-soluble diglycidyl ethers have performed well. Besides, amines are commonly used as curing agents in combination with diglycidyl ethers for the production of epoxy resins. For this reason, amine-mediated epoxy ring-opening reactions of 1,4- butanediol diglycidyl ether have been studied as approaches to obtain sustainable cross-linked polymers suitable for eco-friendly scaling-up, based upon commercial starch-derived maltodextrins, using water as a unique solvent.
One-step sustainable synthesis of cationic high- swelling polymers obtained from starch-derived maltodextrins
Claudio Cecone
First
;Giulia Costamagna;Marco Ginepro;Francesco TrottaLast
2021-01-01
Abstract
The good water solubility displayed by most starch-derived maltodextrins has limited their use when specific mechanical properties are required, particularly when working in aqueous media. As a result, numerous attempts to cross-link such polysaccharides to obtain cross-linked polymers have been reported; in this context, non-toxic and biocompatible water-soluble diglycidyl ethers have performed well. Besides, amines are commonly used as curing agents in combination with diglycidyl ethers for the production of epoxy resins. For this reason, amine-mediated epoxy ring-opening reactions of 1,4- butanediol diglycidyl ether have been studied as approaches to obtain sustainable cross-linked polymers suitable for eco-friendly scaling-up, based upon commercial starch-derived maltodextrins, using water as a unique solvent.File | Dimensione | Formato | |
---|---|---|---|
authorreprints.pdf
Accesso aperto
Descrizione: One-step sustainable synthesis of cationic high- swelling polymers obtained from starch-derived maltodextrins
Tipo di file:
PDF EDITORIALE
Dimensione
4.48 MB
Formato
Adobe PDF
|
4.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.