We consider the initial value problem for a class of semilinear p-evolution equations with (t,x)-depending coefficients. Under suitable decay conditions for |x| tending to infinity on the imaginary part of the coefficients, we prove local in time well posedness of the Cauchy problem in suitable weighted Sobolev spaces.
Titolo: | Semilinear p-evolution equations in weighted Sobolev spaces |
Autori Riconosciuti: | |
Autori: | Alessia Ascanelli; Marco Cappiello |
Data di pubblicazione: | 2021 |
Abstract: | We consider the initial value problem for a class of semilinear p-evolution equations with (t,x)-depending coefficients. Under suitable decay conditions for |x| tending to infinity on the imaginary part of the coefficients, we prove local in time well posedness of the Cauchy problem in suitable weighted Sobolev spaces. |
Editore: | Springer |
Titolo del libro: | Anomalies in Partial Differential Equations |
Collana: | INDAM Series in Mathematics |
Volume: | 43 |
Pagina iniziale: | 1 |
Pagina finale: | 34 |
Digital Object Identifier (DOI): | 10.1007/978-3-030-61346-4_1 |
Parole Chiave: | p-evolution equations, Semilinear Cauchy problem, Nash-Moser theorem, Weighted Sobolev spaces, Pseudo-differential operators |
Appare nelle tipologie: | 02A-Contributo in volume |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
capitoloAscanelliCappiello.pdf | PDF EDITORIALE | Utenti riconosciuti Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.