Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.

Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids

Ficiarà, Eleonora;Boschi, Silvia;Ansari, Shoeb;D'Agata, Federico;Abollino, Ornella;Caroppo, Paola;Rainero, Innocenzo;Guiot, Caterina
2021

Abstract

Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.
13
1
13
Alzheimer's disease; biomarker (BM); cerebrospinal fluid; iron; mild cognitive impairment
Ficiarà, Eleonora; Boschi, Silvia; Ansari, Shoeb; D'Agata, Federico; Abollino, Ornella; Caroppo, Paola; Di Fede, Giuseppe; Indaco, Antonio; Rainero, Innocenzo; Guiot, Caterina
File in questo prodotto:
File Dimensione Formato  
MACHINE LEARNING.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 959.93 kB
Formato Adobe PDF
959.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1779900
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact