Semi-supervised learning is crucial in many applications where accessing class labels is unaffordable or costly. The most promising approaches are graph-based but they are transductive and they do not provide a generalized model working on inductive scenarios. To address this problem, we propose a generic framework, ESA☆, for inductive semi-supervised learning based on three components: an ensemble of semi-supervised autoencoders providing a new data representation that leverages the knowledge supplied by the reduced amount of available labels; a graph-based step that helps augmenting the training set with pseudo-labeled instances and, finally, a classifier trained with labeled and pseudo-labeled instances. Additionally, we also introduce two variants of our framework adopting different graph-based pseudo-labeling strategies: the first, ESALP, is based on a confidence-aware label propagation algorithm, while the second, ESAGAT, on a graph convolutional attention network. The experimental results show that our framework outperforms state-of-the-art inductive semi-supervised methods.
ESA*: A Generic Framework for Semi-supervised Inductive Learning
Shuyi YangFirst
;Dino Ienco;Roberto Esposito;Ruggero G. Pensa
Last
2021-01-01
Abstract
Semi-supervised learning is crucial in many applications where accessing class labels is unaffordable or costly. The most promising approaches are graph-based but they are transductive and they do not provide a generalized model working on inductive scenarios. To address this problem, we propose a generic framework, ESA☆, for inductive semi-supervised learning based on three components: an ensemble of semi-supervised autoencoders providing a new data representation that leverages the knowledge supplied by the reduced amount of available labels; a graph-based step that helps augmenting the training set with pseudo-labeled instances and, finally, a classifier trained with labeled and pseudo-labeled instances. Additionally, we also introduce two variants of our framework adopting different graph-based pseudo-labeling strategies: the first, ESALP, is based on a confidence-aware label propagation algorithm, while the second, ESAGAT, on a graph convolutional attention network. The experimental results show that our framework outperforms state-of-the-art inductive semi-supervised methods.File | Dimensione | Formato | |
---|---|---|---|
neucom2021_draft.pdf
Accesso aperto
Descrizione: PDF post-print
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
neurocom2021_printed.pdf
Accesso riservato
Descrizione: PDF a stampa
Tipo di file:
PDF EDITORIALE
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.