A municipal solid waste incinerator (MSWI) was installed in a peripheral area of the city of Turin. In this study, we evaluated the contribution of this plant to the massive concentration of PM10, to its chemical composition and to the distribution of the lead isotopes during the start-up phase.We assessed the inorganic composition of PM10 collected in the vicinity of the Turin incinerator by inductively coupled plasma atomic emission spectroscopy (ICP-AES), magnetic sector inductively coupled plasma mass spectrometer (SF-ICP-MS) and ion chromatography (IC). The lead isotope ratios in PM10 samples were determined by SF-ICP-MS by a method developed and optimized using experimental design approach. Element trends and data chemometric treatment evidence that the vehicular traffic, increased in this area due to the opening of the MSWI plant, and, to a lesser degree, the direct incinerator emissions influence As, Cd, Cr, Cu, Ba, Mo, Pb, Sn and Zn concentrations. As a whole, however, the element concentrations in PM10 and the Enrichment Factors (EFs) were comparable with the values reported for other urban sites and target pollutant concentrations of MSWI emissions, namely Cd, Cr, Cu and Pb, were lower than in PM10 emitted from older MSWIs. This confirms that incinerators of new installation have a lower impact on atmospheric PM10 composition thanks to stricter current legislation and up-to-date technologies. The lead isotope ratios investigation allowed to distinguish the diverse sources (crustal, vehicular traffic and MSWI) that influence lead concentration in PM10 collected near incinerator during start-up phase.

Influence of start-up phase of an incinerator on inorganic composition and lead isotope ratios of the atmospheric PM10

Malandrino M.;Barolo C.;Abollino O.;Giacomino A.
Last
2021-01-01

Abstract

A municipal solid waste incinerator (MSWI) was installed in a peripheral area of the city of Turin. In this study, we evaluated the contribution of this plant to the massive concentration of PM10, to its chemical composition and to the distribution of the lead isotopes during the start-up phase.We assessed the inorganic composition of PM10 collected in the vicinity of the Turin incinerator by inductively coupled plasma atomic emission spectroscopy (ICP-AES), magnetic sector inductively coupled plasma mass spectrometer (SF-ICP-MS) and ion chromatography (IC). The lead isotope ratios in PM10 samples were determined by SF-ICP-MS by a method developed and optimized using experimental design approach. Element trends and data chemometric treatment evidence that the vehicular traffic, increased in this area due to the opening of the MSWI plant, and, to a lesser degree, the direct incinerator emissions influence As, Cd, Cr, Cu, Ba, Mo, Pb, Sn and Zn concentrations. As a whole, however, the element concentrations in PM10 and the Enrichment Factors (EFs) were comparable with the values reported for other urban sites and target pollutant concentrations of MSWI emissions, namely Cd, Cr, Cu and Pb, were lower than in PM10 emitted from older MSWIs. This confirms that incinerators of new installation have a lower impact on atmospheric PM10 composition thanks to stricter current legislation and up-to-date technologies. The lead isotope ratios investigation allowed to distinguish the diverse sources (crustal, vehicular traffic and MSWI) that influence lead concentration in PM10 collected near incinerator during start-up phase.
2021
266
129091
129107
Chemometric processing; Incinerator; Lead isotope ratios; Trace elements in PM; 10; Cities; Environmental Monitoring; Isotopes; Lead; Air Pollutants
Ziegler D.; Malandrino M.; Barolo C.; Adami G.; Sacco M.; Pitasi F.; Abollino O.; Giacomino A.
File in questo prodotto:
File Dimensione Formato  
2021_Chemosph Influence of.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Chemosphere_2016_Influence of start up_Ziegler et al_AperTO.pdf

Open Access dal 25/11/2022

Descrizione: Postprint con supplementary material
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1783153
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact