Motivated by the recent discoveries on the stability properties of symmetric periodic solutions of Hamiltonian systems, we establish a Bott-type iteration formula for dihedraly equivariant Hamiltonian systems. We apply the abstract theory for computing the Morse indices of the celebrated Chenciner and Montgomery figure-eight orbit for the planar three body problem in different equivariant spaces. Finally we provide a hyperbolicity criterion for reversible Lagrangian systems.

A dihedral Bott-type iteration formula and stability of symmetric periodic orbits

Alessandro Portaluri
;
2020-01-01

Abstract

Motivated by the recent discoveries on the stability properties of symmetric periodic solutions of Hamiltonian systems, we establish a Bott-type iteration formula for dihedraly equivariant Hamiltonian systems. We apply the abstract theory for computing the Morse indices of the celebrated Chenciner and Montgomery figure-eight orbit for the planar three body problem in different equivariant spaces. Finally we provide a hyperbolicity criterion for reversible Lagrangian systems.
2020
59
2
1
50
https://arxiv.org/abs/1705.09173
Maslov index · Spectral flow · Equivariant dihedral group action · Bott iteration formula · Linear stability · 3-Body problem
Xijun Hu; Alessandro Portaluri; Ran Yang
File in questo prodotto:
File Dimensione Formato  
Hu2020_Article_ADihedralBott-typeIterationFor(2).pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 537.5 kB
Formato Adobe PDF
537.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1783773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact