We consider regularity issues for minima of non-autonomous functionals in the Calculus of Variations exhibiting non-uniform ellipticity features. We provide a few sharp regularity results for local minimizers that also cover the case of functionals with nearly linear growth. The analysis is carried out provided certain necessary approximation-in-energy conditions are satisfied. These are related to the occurrence of the so-called Lavrentiev phenomenon that non-autonomous functionals might exhibit, and which is a natural obstruction to regularity. In the case of vector valued problems, we concentrate on higher gradient integrability of minima. Instead, in the scalar case, we prove local Lipschitz estimates. We also present an approach via a variant of Moser’s iteration technique that allows to reduce the analysis of several non-uniformly elliptic problems to that for uniformly elliptic ones.
On the Regularity of Minima of Non-autonomous Functionals
De Filippis C.;
2020-01-01
Abstract
We consider regularity issues for minima of non-autonomous functionals in the Calculus of Variations exhibiting non-uniform ellipticity features. We provide a few sharp regularity results for local minimizers that also cover the case of functionals with nearly linear growth. The analysis is carried out provided certain necessary approximation-in-energy conditions are satisfied. These are related to the occurrence of the so-called Lavrentiev phenomenon that non-autonomous functionals might exhibit, and which is a natural obstruction to regularity. In the case of vector valued problems, we concentrate on higher gradient integrability of minima. Instead, in the scalar case, we prove local Lipschitz estimates. We also present an approach via a variant of Moser’s iteration technique that allows to reduce the analysis of several non-uniformly elliptic problems to that for uniformly elliptic ones.File | Dimensione | Formato | |
---|---|---|---|
1905.10534.pdf
Accesso riservato
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
518.12 kB
Formato
Adobe PDF
|
518.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.