Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients.

Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates

Tonon C.
First
;
Turci F.;Favero-Longo S. E.
Last
2021-01-01

Abstract

Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients.
2021
48
244
253
Biodeterioration; Bioreceptivity; Black microcolonial fungi; Marble; Stone cultural heritage; Stress tolerance
Tonon C.; Breitenbach R.; Voigt O.; Turci F.; Gorbushina A.A.; Favero-Longo S.E.
File in questo prodotto:
File Dimensione Formato  
Tonon_et_al_2021JCH.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Tonon et al 2021_preprint.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1788065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact