A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/ IL17A−/− mice. Fibroblasts isolated from IL17A+/+ and IL17A−/− KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A−/− fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A−/− mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A−/− cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.

IL17A CRITICALLY SHAPES THE TRANSCRIPTIONAL PROGRAM OF FIBROBLASTS IN PANCREATIC CANCER AND SWITCHES ON THEIR PRO-TUMORIGENIC FUNCTIONS

G Mucciolo
First
;
C Curcio;C Roux;R Curto;R Chiarle;MA Satolli;P Provero;F Novelli
;
P Cappello
2021-01-01

Abstract

A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/ IL17A−/− mice. Fibroblasts isolated from IL17A+/+ and IL17A−/− KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A−/− fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A−/− mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A−/− cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.
2021
118
6
1
9
IL17A | pancreatic cancer | cancer-associated fibroblast | extracellular matrix | fibrosis
G Mucciolo , C Curcio, C Roux , W Li , M Capello, R Curto, R Chiarle, D Giordano, MA Satolli, R Lawlor, A Scarpa, P Lukac, D Stakheev, P Provero, L Vannucci, TW. Mak, F Novelli, P Cappello
File in questo prodotto:
File Dimensione Formato  
Mucciolo_PNAS_2021.pdf

Accesso aperto

Descrizione: Mucciolo_pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1790731
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact