Redox abnormalities are at the crossroad of cardiovascular diseases, cancer and cardiotoxicity from anticancer treatments. Indeed, disturbances of the redox equilibrium are common drivers of these conditions. Not only is an increase in oxidative stress a fundamental mechanism of action of anthracyclines (which have historically been the most studied anticancer treatments) but also this is at the basis of the toxic cardiovascular effects of antineoplastic targeted drugs and radiotherapy. Here we examine the oxidative mechanisms involved in the different cardiotoxicities induced by the main redox-based antineoplastic treatments, and discuss novel approaches for the treatment of such toxicities.
Oxidative stress in anticancer therapies-related cardiac dysfunction
Pirozzi F.;Cuomo A.;Russo M.;Ghigo A.;Hirsch E.;Tocchetti C. G.;
2021-01-01
Abstract
Redox abnormalities are at the crossroad of cardiovascular diseases, cancer and cardiotoxicity from anticancer treatments. Indeed, disturbances of the redox equilibrium are common drivers of these conditions. Not only is an increase in oxidative stress a fundamental mechanism of action of anthracyclines (which have historically been the most studied anticancer treatments) but also this is at the basis of the toxic cardiovascular effects of antineoplastic targeted drugs and radiotherapy. Here we examine the oxidative mechanisms involved in the different cardiotoxicities induced by the main redox-based antineoplastic treatments, and discuss novel approaches for the treatment of such toxicities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.