We report on the discovery and validation of TOI 813 b (TIC55525572b), a transiting exoplanet identified by citizen scientists in data from NASA's Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant (R* = 1.94 R☉, M☉ = 1.32 M☉). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of 2 MJup (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of 83.8911+0.0027-0.0031 d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of 0.423+0031-0.037 AU. The planet's orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet.
Planet Hunters Tess I: TOI 813, a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit
Gandolfi D.;Wang J.;Mitchell T.;
2020-01-01
Abstract
We report on the discovery and validation of TOI 813 b (TIC55525572b), a transiting exoplanet identified by citizen scientists in data from NASA's Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant (R* = 1.94 R☉, M☉ = 1.32 M☉). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of 2 MJup (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of 83.8911+0.0027-0.0031 d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of 0.423+0031-0.037 AU. The planet's orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet.File | Dimensione | Formato | |
---|---|---|---|
Eisner_2020.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
13.47 MB
Formato
Adobe PDF
|
13.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.