In this article we present a new adaptive algorithm for solving 2D interpolation problems of large scattered data sets through the radial basis function partition of unity method. Unlike other time-consuming schemes this adaptive method is able to efficiently deal with scattered data points with highly varying density in the domain. This target is obtained by decomposing the underlying domain in subdomains of variable size so as to guarantee a suitable number of points within each of them. The localization of such points is done by means of an efficient search procedure that depends on a partition of the domain in square cells. For each subdomain the adaptive process identifies a predefined neighborhood consisting of one or more levels of neighboring cells, which allows us to quickly find all the subdomain points. The algorithm is further devised for an optimal selection of the local shape parameters associated with radial basis function interpolants via leave-one-out cross validation and maximum likelihood estimation techniques. Numerical experiments show good performance of this adaptive algorithm on some test examples with different data distributions. The efficacy of our interpolation scheme is also pointed out by solving real world applications.

Adaptive Radial Basis Function Partition of Unity Interpolation: A Bivariate Algorithm for Unstructured Data

Cavoretto R.
First
2021-01-01

Abstract

In this article we present a new adaptive algorithm for solving 2D interpolation problems of large scattered data sets through the radial basis function partition of unity method. Unlike other time-consuming schemes this adaptive method is able to efficiently deal with scattered data points with highly varying density in the domain. This target is obtained by decomposing the underlying domain in subdomains of variable size so as to guarantee a suitable number of points within each of them. The localization of such points is done by means of an efficient search procedure that depends on a partition of the domain in square cells. For each subdomain the adaptive process identifies a predefined neighborhood consisting of one or more levels of neighboring cells, which allows us to quickly find all the subdomain points. The algorithm is further devised for an optimal selection of the local shape parameters associated with radial basis function interpolants via leave-one-out cross validation and maximum likelihood estimation techniques. Numerical experiments show good performance of this adaptive algorithm on some test examples with different data distributions. The efficacy of our interpolation scheme is also pointed out by solving real world applications.
2021
87
2
1
24
Adaptive algorithms; Meshless approximation; Partition of unity methods; Radial basis functions; Scattered data interpolation
Cavoretto R.
File in questo prodotto:
File Dimensione Formato  
J51.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper_jomp21_UniTO_preprint.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1791234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact