The extragalactic background light is comprised of the cumulative radiation from all galaxies across the history of the universe. The angular power spectrum of the anisotropies of such a background at near-infrared (IR) frequencies lacks of a complete understanding and shows a robust excess which cannot be easily explained with known sources. Dark matter in the form of axion-like particles (ALPs) with a mass around the electronvolt will decay into two photons with wavelengths in the near-IR band, possibly contributing to the background intensity. We compute the near-IR background angular power spectrum including emissions from galaxies, as well as the contributions from the intra-halo light and ALP decay, and compare it to measurements from the Hubble Space Telescope and Spitzer. We find that the preferred values for the ALP mass and ALP-photon coupling to explain the excess are in tension with star cooling data and observations of dwarf spheroidal galaxies.

Searching for axion-like particle decay in the near-infrared background: An updated analysis

Vittino A.;Fornengo N.;Regis M.;
2021-01-01

Abstract

The extragalactic background light is comprised of the cumulative radiation from all galaxies across the history of the universe. The angular power spectrum of the anisotropies of such a background at near-infrared (IR) frequencies lacks of a complete understanding and shows a robust excess which cannot be easily explained with known sources. Dark matter in the form of axion-like particles (ALPs) with a mass around the electronvolt will decay into two photons with wavelengths in the near-IR band, possibly contributing to the background intensity. We compute the near-IR background angular power spectrum including emissions from galaxies, as well as the contributions from the intra-halo light and ALP decay, and compare it to measurements from the Hubble Space Telescope and Spitzer. We find that the preferred values for the ALP mass and ALP-photon coupling to explain the excess are in tension with star cooling data and observations of dwarf spheroidal galaxies.
2021
2021
5
046
067
axions; dark matter detectors; dark matter theory; galaxy clustering
Caputo A.; Vittino A.; Fornengo N.; Regis M.; Taoso M.
File in questo prodotto:
File Dimensione Formato  
Caputo_2021_J._Cosmol._Astropart._Phys._2021_046.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1792615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact