Hate Speech and harassment are widespread in online communication, due to users’ freedom and anonymity and the lack of regulation provided by social media platforms. Hate speech is topically focused (misogyny, sexism, racism, xenophobia, homophobia, etc.), and each specific manifestation of hate speech targets different vulnerable groups based on characteristics such as gender (misogyny, sexism), ethnicity, race, religion (xenophobia, racism, Islamophobia), sexual orientation (homophobia), and so on. Most automatic hate speech detection approaches cast the problem into a binary classification task without addressing either the topical focus or the target-oriented nature of hate speech. In this paper, we propose to tackle, for the first time, hate speech detection from a multi-target perspective. We leverage manually annotated datasets, to investigate the problem of transferring knowledge from different datasets with different topical focuses and targets. Our contribution is threefold: (1) we explore the ability of hate speech detection models to capture common properties from topic-generic datasets and transfer this knowledge to recognize specific manifestations of hate speech; (2) we experiment with the development of models to detect both topics (racism, xenophobia, sexism, misogyny) and hate speech targets, going beyond standard binary classification, to investigate how to detect hate speech at a finer level of granularity and how to transfer knowledge across different topics and targets; and (3) we study the impact of affective knowledge encoded in sentic computing resources (SenticNet, EmoSenticNet) and in semantically structured hate lexicons (HurtLex) in determining specific manifestations of hate speech. We experimented with different neural models including multitask approaches. Our study shows that: (1) training a model on a combination of several (training sets from several) topic-specific datasets is more effective than training a model on a topic-generic dataset; (2) the multi-task approach outperforms a single-task model when detecting both the hatefulness of a tweet and its topical focus in the context of a multi-label classification approach; and (3) the models incorporating EmoSenticNet emotions, the first level emotions of SenticNet, a blend of SenticNet and EmoSenticNet emotions or affective features based on Hurtlex, obtained the best results. Our results demonstrate that multitarget hate speech detection from existing datasets is feasible, which is a first step towards hate speech detection for a specific topic/target when dedicated annotated data are missing. Moreover, we prove that domain-independent affective knowledge, injected into our models, helps finer-grained hate speech detection.
Emotionally Informed Hate Speech Detection: A Multi-target Perspective
Pamungkas, Endang WahyuCo-first
;Patti, Viviana
2021-01-01
Abstract
Hate Speech and harassment are widespread in online communication, due to users’ freedom and anonymity and the lack of regulation provided by social media platforms. Hate speech is topically focused (misogyny, sexism, racism, xenophobia, homophobia, etc.), and each specific manifestation of hate speech targets different vulnerable groups based on characteristics such as gender (misogyny, sexism), ethnicity, race, religion (xenophobia, racism, Islamophobia), sexual orientation (homophobia), and so on. Most automatic hate speech detection approaches cast the problem into a binary classification task without addressing either the topical focus or the target-oriented nature of hate speech. In this paper, we propose to tackle, for the first time, hate speech detection from a multi-target perspective. We leverage manually annotated datasets, to investigate the problem of transferring knowledge from different datasets with different topical focuses and targets. Our contribution is threefold: (1) we explore the ability of hate speech detection models to capture common properties from topic-generic datasets and transfer this knowledge to recognize specific manifestations of hate speech; (2) we experiment with the development of models to detect both topics (racism, xenophobia, sexism, misogyny) and hate speech targets, going beyond standard binary classification, to investigate how to detect hate speech at a finer level of granularity and how to transfer knowledge across different topics and targets; and (3) we study the impact of affective knowledge encoded in sentic computing resources (SenticNet, EmoSenticNet) and in semantically structured hate lexicons (HurtLex) in determining specific manifestations of hate speech. We experimented with different neural models including multitask approaches. Our study shows that: (1) training a model on a combination of several (training sets from several) topic-specific datasets is more effective than training a model on a topic-generic dataset; (2) the multi-task approach outperforms a single-task model when detecting both the hatefulness of a tweet and its topical focus in the context of a multi-label classification approach; and (3) the models incorporating EmoSenticNet emotions, the first level emotions of SenticNet, a blend of SenticNet and EmoSenticNet emotions or affective features based on Hurtlex, obtained the best results. Our results demonstrate that multitarget hate speech detection from existing datasets is feasible, which is a first step towards hate speech detection for a specific topic/target when dedicated annotated data are missing. Moreover, we prove that domain-independent affective knowledge, injected into our models, helps finer-grained hate speech detection.File | Dimensione | Formato | |
---|---|---|---|
Chiril2021_Article_EmotionallyInformedHateSpeechD.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.