The natural endocast Museo di Geologia e Paleontologia of the Università degli Studi di Torino (MGPT)-PU 13873 is described and analyzed in order to interpret its taxonomic affinities and its potential significance on our understanding of cetacean brain evolution. The endocast is from the early Miocene of Piedmont (between ca. 19 and 16 million years ago), Northwestern Italy, and shows a number of plesiomorphic characters. These include: scarcely rounded cerebral hemispheres, cerebellum exposed in dorsal view with little superimposition by the cerebral hemispheres, short temporal lobe, and long sylvian fissure. The distance between the hypophysis and the rostral pons is particularly high, as it was determined by the calculus of the hypothalamus quotient, suggesting that the development of a deep interpeduncular fossa was not as advanced as in living odontocetes. The encephalization quotient (EQ) of MGPTPU 13873 is 1.81; therefore, this specimen shows an EQ in line with other fossil whales of the same geological age (early Miocene). Comparative analysis shows that there is a critical lack of data from the late Miocene and Pliocene that prevents us to fully understand the recent evolution of the EQ diversity in whales. Moreover, the past diversity of brain size and shape in mysticetes is virtually unknown. All these observations point to the need of additional efforts to uncover evolutionary patterns and processes on cetacean brain evolution.

A natural endocast of an early Miocene odontocete and its implications in cetacean brain evolution

Michelangelo Bisconti;Marco Pavia;Giorgio Carnevale
2021-01-01

Abstract

The natural endocast Museo di Geologia e Paleontologia of the Università degli Studi di Torino (MGPT)-PU 13873 is described and analyzed in order to interpret its taxonomic affinities and its potential significance on our understanding of cetacean brain evolution. The endocast is from the early Miocene of Piedmont (between ca. 19 and 16 million years ago), Northwestern Italy, and shows a number of plesiomorphic characters. These include: scarcely rounded cerebral hemispheres, cerebellum exposed in dorsal view with little superimposition by the cerebral hemispheres, short temporal lobe, and long sylvian fissure. The distance between the hypophysis and the rostral pons is particularly high, as it was determined by the calculus of the hypothalamus quotient, suggesting that the development of a deep interpeduncular fossa was not as advanced as in living odontocetes. The encephalization quotient (EQ) of MGPTPU 13873 is 1.81; therefore, this specimen shows an EQ in line with other fossil whales of the same geological age (early Miocene). Comparative analysis shows that there is a critical lack of data from the late Miocene and Pliocene that prevents us to fully understand the recent evolution of the EQ diversity in whales. Moreover, the past diversity of brain size and shape in mysticetes is virtually unknown. All these observations point to the need of additional efforts to uncover evolutionary patterns and processes on cetacean brain evolution.
2021
529
1198
1227
brain, Cetacea, endocast, EQ, evolution, fossil record
Michelangelo Bisconti, Piero Damarco, Giandonato Tartarelli, Marco Pavia, Giorgio Carnevale
File in questo prodotto:
File Dimensione Formato  
Bisconti et al. 2021 - Journal of Comparative Neurology.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 93.83 MB
Formato Adobe PDF
93.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1794829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact